In situ extraction is important for highly productive and cost-efficient processes in industrial biotechnology, but it is difficult to establish for intracellularly accumulating carotenoids like β-carotene. In this study, the organic solvent used in aqueous-organic two-phase media exerted a strong effect on the release of β-carotene from recombinant yeast cells. The carotenoid-synthesizing Saccharomyces cerevisiae strain YB/I/E was cultivated in two-liquid-phase media with 20% dodecane or 20% sunflower oil. Up to 0.6 µg/ml β-carotene was released into sunflower oil, but less than 0.1 µg/ml into dodecane, although biocompatibility and solubility of β-carotene is appropriate for both solvents. Addition of linoleic acid, the main component of sunflower oil, to the dodecane phase increased the amount of β-carotene released, indicating that linoleic acid is the component responsible for the β-carotene release into sunflower oil. These findings demonstrate that the effect of the organic solvent should be taken into consideration for further research on in situ extraction of carotenoids.

1.
Alic N, Higgins VJ, Pichova A, Breitenbach M, Dawes IW: Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae. J Biol Chem 2003;278:41849-41855.
[PubMed]
2.
Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J: Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 2008;99:666-677.
[PubMed]
3.
Avery SV, Howlett NG, Radice S: Copper toxicity toward Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 1996;62:3960-3966.
[PubMed]
4.
BCC Research: The Global Market for Carotenoids. Report FOD025D. Wellesley, BCC Research, 2010.
5.
Biesalski H, Chichili G, Frank J, Vonlintig J, Nohr D: Conversion of β-carotene to retinal pigment. Vitam Horm 2007;75:117-130.
[PubMed]
6.
Bossie MA, Martin CA: Nutritional regulation of yeast δ-9 fatty acid desaturase activity. J Bacteriol 1989;171:6409-6413.
[PubMed]
7.
Evans MV, Turton HE, Grant CM, Dawes IW: Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: involvement of a respiration-related process for maximal sensitivity and adaptive response. J Bacteriol 1998;180:483-490.
[PubMed]
8.
Ferreira TC, de Moraes LM, Campos EG: Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res 2011;11:408-417.
[PubMed]
9.
Gruszecki WI, Strzalka K: Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 2005;1740:108-115.
[PubMed]
10.
Hejazi MA, Holwerda E, Wijffels RH: Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng 2004;85:475-481.
[PubMed]
11.
Johnson EA, Schroeder WA: Microbial carotenoids; in: Fiechter A (ed): Advances in Biochemical Engineering/Biotechnology. Berlin, Springer, 1995, vol 53, pp 120-171.
12.
Kaltschmitt M, Hartmann H, Hofbauer H: Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Berlin, Springer, 2009.
13.
Kleinegris DM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH: Phase toxicity of dodecane on the microalga Dunaliella salina. J Appl Phycol 2011;23:949-958.
[PubMed]
14.
Mishra P, Prasad R: Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1989;30:294-298.
15.
Miura Y, Kondo J, Saito T, Shimada H, Fraser PD, Misawa N: Production of carotenoids lycopene, β-carotene and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 1998;64:1226.
[PubMed]
16.
Qun J, Shanjing Y, Lehe M: Tolerance of immobilized baker's yeast in organic solvents. Enzyme Microbiol Technol 2002;30:721-725.
17.
Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Humbelin M, Sandmann G, Schrader J: Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2011;89:555-571.
[PubMed]
18.
Sikkema J, Bont JAM, Poolman B: Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995;59:201-222.
[PubMed]
19.
Stukey JE, McDonough VM, Martin CE: Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 1989;264:16537-16544.
[PubMed]
20.
Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ: Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast 2010;27:983-998.
[PubMed]
21.
Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ: High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 2007;73:4342-4350.
[PubMed]
22.
Visser H, Sandmann G, Verdoes JC: Metabolic engineering of the astaxanthin biosynthetic pathway in Xantophyllomyces dendrorhous; in Barredo JL (ed): Xantophylls in Fungi. Methods in Biotechnology. Totowa, Humana Press, 2005, vol 18.
23.
Walter M, Floss D, Strack D: Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 2010;232:1-17.
[PubMed]
24.
Yoon S, Park H, Kim J, Lee S, Choi M, Kim J, Oh D, Keasling JD, Kim SW: Increased β-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 2007;23:599-605.
[PubMed]
You do not currently have access to this content.