Cells and viruses are structured and harbor complex organization. This manifests in intra- and extracellular compartments such as reticuli and periplasmic spaces, storage and energy-harvesting organelles such as acidocalcisomes and mitochondria, and specialized structures that hold genomic repositories such as nuclei and capsids. Structural phylogenomic reconstruction of the protein repertoire of the common ancestor of life, the urancestor, suggests these entities that existed 2.9 billion years ago were not only complex from a structural and functional point of view, but were also cellularly structured. We also provide support to the existence of urancestral storage organelles that were analogous to acidocalcisomes. These cellular structures probably accumulated compounds that stored energy in their phosphoanhydride bonds, such as polyphosphates. These energy-rich compounds necessary for thioester and pyrophosphate intermediates would have channeled the abundant redox energy of early Earth to the early metabolic needs of the primordial cells. Our findings are compatible with a relatively complex urancestral cell and with abundant microfossil evidence supporting the existence of primordial microbial communities as far back as 3.4 billion years ago. Results highlight the centrality of the cellular compartment and bioenergetics in the early evolutionary stages of life.

1.
Achbergerova L, Nahalka J: Polyphosphate - an ancient energy source and active metabolic regulator. Microb Cell Fact 2011;10:63.
2.
Allen JF, de Paula WBM, Puthiyaveetil S, Nield J: A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci 2011;16:645-655.
3.
Alvarez S, Jerez CA: Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 2004;70:5177-5182.
4.
Arrhenius G, Sales B, Mojzsis S, Lee T: Entropy and charge in molecular evolution - the case of phosphate. J Theor Biol 1997;187:503-522.
5.
Au KM, Barabote RD, Hu KY, Saier MH Jr.: Evolutionary appearance of H+-translocating pyrophosphatases. Microbiology 2006;152:1243-1247.
6.
Bagatolli LA, Parasassi T, Gratton E: Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods - a two photon fluorescence microscopy study. Chem Phys Lipids 2000;105:135-147.
7.
Bagatolli LA: To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta Biomembranes 2006;1758:1541-1556.
8.
Baltscheffsky M, Baltscheffsky H: Alternative photophosphorylation, inorganic pyrophosphate synthase and inorganic pyrophosphate. Photosynthesis Res 1995;46:87-91.
9.
Benner SA, Kim H-J, Carrigan MA: Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc Chem Res 2012;45:2025-2034.
10.
Besteiro S, Tonn D, Tetley L, Coombs GH, Mottram JC: The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania. J Cell Sci 2008;121:561-570.
11.
Bodeï S, Buatier M, Steinmann M, Adatte T, Wheat CG: Characterization of metalliferous sediment from a low-temperature hydrothermal environment on the Eastern Flank of the East Pacific Rise. Marine Geology 2008;250:128-141.
12.
Bradley AS, Fredricks H, Hinrichs K-U, Summons RE: Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field. Org Geochem 2009;40:1169-1178.
13.
Bryant DE, Greenfield D, Walshaw RD, Evans SM, Nimmo AE, Smith CL, Wang L, Pasek MA, Kee TP: Electrochemical studies of iron meteorites: phosphorus redox chemistry on the early Earth. Intl J Astrobiology 2009;8:27-36.
14.
Bryant DE, Kee TP: Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth: H-Phosphinic acid from the Nantan meteorite. Chem Commun 2006;22:2344-2346.
15.
Caetano-Anollés G, Kim KM, Caetano-Anollés D: The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012;74:1-34.
16.
Caetano-Anollés G, Nasir A: Benefits of using molecular structure and abundance in phylogenomic analysis. Front Gene 2012;3:172.
17.
Caetano-Anollés G, Seufferheld M: The coevolutionary roots of biochemistry and cellular organization challenge the RNA world paradigm. J Mol Microbiol Biotechnol 2013; 23:152-177.
18.
Caetano-Anollés G, Wang M, Caetano-Anollés D, Mittenthal JE: The origin, evolution and structure of the protein world. Biochem J 2009a;417:621-637.
19.
Caetano-Anollés G, Yafremava LS, Gee H, Caetano-Anollés D, Kim HS, Mittenthal JE: The origin and evolution of modern metabolism. Intl J Biochem Cell Biol 2009b;41:285-297.
20.
Choi I-G, Kim S-H: Global extent of horizontal gene transfer. Proc Natl Acad Sci USA 2007;104:4489-4494.
21.
Cleaves HJ 2nd, Michalkova Scott A, Hill FC, Leszczynski J, Sahai N, Hazen R: Mineral-organic interfacial processes: potential roles in the origins of life. Chem Soc Rev 2012;41:5502-5525.
22.
Cody GD: Transition metal sulfides and the origins of metabolism. Annu Rev Earth Planet Sci 2004;32:569-599.
23.
Dagan T: Phylogenomic networks. Trends Microbiol 2011;19:483-491.
24.
Darwin CR: On the Origin of Species by Means of Natural Selection. London, Murray, 1859.
25.
Deamer DW: The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 1997;61:239-261.
26.
Dell'Angelica EC, Mullins C, Caplan S, Bonifacino JS: Lysosome-related organelles. FASEB J 2000;14:1265-1278.
27.
Docampo R, Ulrich P, Moreno SNJ: Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos Trans R Soc Lond B Biol Sci 2010;365:775-784.
28.
Docampo R, Moreno SNJ: Acidocalcisomes. Cell Calcium 2011;50:113-119.
29.
Drory O, Nelson N: The emerging structure of vacuolar ATPases. Physiology 2006;21:317-325.
30.
Forslund K, Henricson A, Hollich V, Sonnhammer ELL: Domain tree-based analysis of protein architecture evolution. Mol Biol Evol 2008;25:254-264.
31.
Forterre P, Benachenhou-Lahfa N, Confalonieri F, Duguet M, Elie C, Labedan B: The nature of the last universal ancestor and the root of the tree of life, still open questions. BioSystems 1992;28:15.
32.
Glansdorff N, Xu Y, Labedan B: The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 2008;3:29.
33.
Glazer AN: Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 1985;14:47-77.
34.
Gough J: Convergent evolution of domain architectures (is rare). Bioinformatics 2005;21:1464-1471.
35.
Gribaldo S, Brochier C: Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 2009;160:513-521.
36.
Grossman AR, Schaefer MR, Chiang GG, Collier JL: The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 1993;57:725-749.
37.
Hagan W, Parker A, Steuerwald A, Hathaway M: Phosphate solubility and the cyanate-mediated synthesis of pyrophosphate. Orig Life Evol Biosph 2007;37:113-122.
38.
Hanczyc MM, Fujikawa SM, Szostak JW: Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 2003;302:618-622.
39.
Hedlund J, Roberto C, Margareta B, Herrick B, Bengt P: Analysis of ancient sequence motifs in the H+-PPase family. FEBS J 2006;273:5183-5193.
40.
Holm N, Baltscheffsky H: Links between hydrothermal environments, pyrophosphate, Na+, and early evolution. Orig Life Evol Biosph 2011;41:483-493.
41.
Holm NG, Neubeck A: Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. Geochem Trans 2009;10:9.
42.
Jakschitz T, Rode BM: Evolution from simple inorganic compounds to chiral peptides. Chem Soc Rev 2012;41:5484-5489.
43.
Javaux EJ, Marshall CP, Bekker A: Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliclastic deposits. Nature 2010;463:934-938.
44.
Jekely G: Did the last common ancestor have a biological membrane? Biology Direct 2006;1:35.
45.
Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A: The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 2012;337:473-476.
46.
Kim K, Caetano-Anollés G: The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol Biol 2011;11:140.
47.
Kim KM, Caetano-Anollés G: The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. BMC Evol Biol 2012;12:13.
48.
Koga Y, Kyuragi T, Nishihara M, Sone N: Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol 1998;46:54-63.
49.
Kongshaug KO, Fjellvåg H, Lillerud KP: Synthesis and crystal structure of the hydrated magnesium diphosphate Mg2P2O7·3.5H2O and its high temperature variant Mg2P2O7·H2O. Solid State Sciences 2000;2:205-214.
50.
Konhauser KO, Lalonde SV, Amskold L, Holland HD: Was there really an Archean phosphate crisis? Science 2007;315:1234.
51.
Koonin EV, Martin W: On the origin of genomes and cells within inorganic compartments. Trends Genet 2005;21:647-654.
52.
Kornberg A, Rao NN, Ault-Riché D: Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 1999;68:89-125.
53.
Lane N, Allen JF, Martin W: How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 2010;32:271-280.
54.
Lin S-M, Tsai Y, Hsiao C-D, Huang Y-T, Chiu C-L, Liu M-H, Tung J-Y, Liu T-H, Pan R-L, Sun Y-J: Crystal structure of a membrane-embedded H+-translocating pyrophophatase. Nature 2012;484:399-403.
55.
Lombard J, López-Garcia P, Moreira D: Early evolution of lipid membranes and the three domains of life. Nature Rev Microbiol 2012;10:507-515.
56.
Luoto HH, Belogurov GA, Baykov AA, Lahti R, Malinen AM: Na+-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H+-translocating pyrophosphatases. J Biol Chem 2011;286:21633-21642.
57.
Martin W, Russell MJ: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond. B Biol Sci 2003;358:59-83.
58.
Martin W, Russell MJ: On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 2007;362:1887-1925.
59.
McCollom TM, Ritter G, Simoneit BRT: Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 1999;29:153-166.
60.
Merhej V, Raoult D: Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin. Front Cell Inf Microbiol 2012;2:113.
61.
Meyer A: Orienterende untersuchungen ueber verbeitung, morphologie, und chemie des volutins. Bot Zeit 1904;62:113-152.
62.
Mielke RE, Russell MJ, Wilson PR, McGlynn SE, Coleman M, Kidd R, Kanik I: Design, fabrication, and test of a hydrothermal reactor for origin-of-life experiments. Astrobiology 2010;10:799-810.
63.
Milner-White EJ, Russell MJ: Functional capabilities of the earliest peptides and the emergence of life. Genes 2011;2:671-688.
64.
Mittenthal JE, Caetano-Anollés D, Caetano-Anollés G: Biphasic patterns of diversification and the emergence of modules. Font Gene 2012;3:147.
65.
Morowitz HJ: A theory of biochemical organization, metabolic pathways, and evolution. Complexity 1999;4:39-53.
66.
Motta LS, Ramos IB, Gomes FM, de Souza W, Champagne DE, Santiago MF, Docampo R, Miranda K, Machado EA: Proton-pyrophosphatase and polyphosphate in acidocalcisome-like vesicles from oocytes and eggs of Periplaneta americana. Insect Biochem Mol Biol 2009;39:198.
67.
Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin E: Origins of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 2012;109:E821-E830.
68.
Mulkidjanian AY, Galperin MY, Koonin EV: Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 2009;34:206-215.
69.
Nasir A, Kim KM, Caetano-Anollés G: Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol 2012a;12:156.
70.
Nasir A, Kim KM, Caetano-Anollés G: Viral evolution: primordial cellular origins and late adaptation to parasitism. Mob Genet Elements 2012b;5:1-6.
71.
Ogunsola OA, Kraeling ME, Zhong S, Pochan DJ, Bronaugh RL, Raghavan SR: Structural analysis of ‘flexible' liposome formulations: new insights into the skin-penetrating ability of soft nanostructures. Soft Matter 2012;8:10226-10232.
72.
Pasek MA: Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 2008;105:853-858.
73.
Pasek M, Block K: Lightning-induced reduction of phosphorus oxidation state. Nature Geosci 2009;2:553-556.
74.
Pasek M, Lauretta D: Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig Life Evol Biosph 2008;38:5-21.
75.
Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW: Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 1996;70:339-348.
76.
Planavsky NJ, Rouxel OJ, Bekker A, Lalonde SV, Konhauser KO, Reinhard CT, Lyons TW: The evolution of the marine phosphate reservoir. Nature 2010;467:1088-1090.
77.
Pokrovsky OS, J Schott: Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochim Cosmochim Acta 2004;68:31-45.
78.
Remonsellez F, Orell A, Jerez CA: Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 2006;152:59-66.
79.
Rocha Facanha A, de Meis L: Reversibility of H+-ATPase and H+-Pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 1998;116:1487-1495.
80.
Rouse RC, Peacor DR, Freed RL: Pyrophosphate groups in the structure of canaphite, CaNa2P2O7·4H2O: the first occurrence of a condensed phosphate as a mineral Am Mineralogist 1988;73:168-171.
81.
Ruiz FA, Lea CR, Oldfield E, Docampo R: Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 2004;279:44250-44257.
82.
Ruiz FA, Marchesini N, Seufferheld MJ, Govindjee, Docampo R: The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 2001;276:46196-46203.
83.
Russell M: The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheoretica 2007;55:133-179.
84.
Russell MJ, Hall AJ, Martin W: Serpentinization as a source of energy at the origin of life. Geobiology 2010;8:355-371.
85.
Scherer PA, Bochem H-P: Energy-dispersive x-ray microanalysis of the methanogen Methanosarcina barkeri ‘Fusaro' grown on methanol and in the presence of heavy metals. Curr Microbiol 1983;9:187.
86.
Schwartz AW: Phosphorus in prebiotic chemistry. Philos Trans R Soc Lond B Biol Sci 2006;361:1743-1749.
87.
Seufferheld MJ, Alvarez HM, Farias ME: Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 2008;74:5867-5874.
88.
Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anollés G: Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct 2011;6:50.
89.
Seufferheld MJ, Lea CR, Vieira M, Oldfield E, Docampo R: The H(+)-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J Biol Chem 2004;279:51193-51202.
90.
Seufferheld MJ, Vieira MC, Ruiz FA, Rodrigues CO, Moreno SN, Docampo R: Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 2003;278:29971-29978.
91.
Sisodia MS: Impact during the proterozoic era possibly inundated the earth with phosphorus. Int J Astrobiol 2009;8:187-191.
92.
Skorko R: Polyphosphate as a source of phosphoryl group in protein modification in the archaebacterium Sulfolobus acidocaldarius. Biochimie 1989;71:1089-1093.
93.
Sober E, Steel M: Testing the hypothesis of common ancestry. J Theor Biol 2002;218:395-408.
94.
Sugitani K, Grey K, Allwood A, Nagaoka T, Mimura K, Minami M, Marshall CP, Van Kranendonk M, Marshall C, Walter M: Diverse microstructures from Archaean chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils? Precambr Res 2007;158:228-262.
95.
Sugitani K, Grey K, Nagaoka T, Mimura K: Three-dimensional morphological and textural complexity of Archean putative microfossils from the Northeastern Pilbara Craton: indications of biogenicity of large (>15 micron) spheroidal and spindle-like structures. Astrobiology 2009;9:603-615.
96.
Šuštar V, Zelko J, Lopalco P, Lobasso S, Ota A, Ulrih NP, Corcelli A, Kralj-Iglič V: Morphology, biophysical properties and protein-mediated fusion of archaeosomes. PLoS One 2012;7:e39401.
97.
Theobald DL: A format test of the theory of universal common ancestry. Nature 2010;465:219-222.
98.
Vannier-Santos MA, Martiny A, Lins U, Urbina JA, Borges VM, de Souza W: Impairment of sterol biosynthesis leads to phosphorus and calcium accumulation in Leishmania acidocalcisomes Microbiology 1999;145(Pt 11):3213-3220.
99.
Vercesi AE, Moreno SNJ, Docampo R: Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J 1994;304:227-233.
100.
Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD: Microfossils of sulphur-metabolizing cells in 3.40 billion-year-old rocks of Western Australia. Nature Geosci 2011;4:698-702.
101.
Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G: Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res 2007;17:1572-1585.
102.
Wang M, Jiang Y-Y, Kim KM, Qu G, Ji H-F, Zhang H-Y, Caetano-Anollés G: A molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol 2011;28:567-582.
103.
Yafremava LS, Wielgos M, Thomas S, Nasir A, Wang M, Mittenthal JE, Caetano-Anollés G: A general framework of persistence strategies for biological systems helps explain domains of life. Front Genet 2013;4:16.
104.
Yamagata Y, Watanabe H, Saitoh M, Namba T: Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 1991;352:516-519.
105.
Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna A, Salido GM, Rosado JA: STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 2011;286:12257-12270.
106.
Zhang K, Hsu F-F, Scott DA, Docampo R, Turk J, Beverley SM: Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 2005;55:1566-1578.
You do not currently have access to this content.