The polysaccharide capsule of Streptococcus pneumoniae is one of the most important virulence factors responsible for human infections and in mouse infection models as well. Larvae of Manduca sexta were used as an alternative animal model in order to test the impact of the pneumococcal capsule on virulence in the insect host. The unencapsulated S. pneumoniae strain R6 was able to cause disease and induce killing in the larvae, and similar results were obtained with related commensal species. However, using the same dose of S. pneumoniae, encapsulated strains including the type 2 D39 strain, the progenitor of R6, and genetically unrelated S. pneumoniae strains of serotype 2, 4, 6B, 23F and 19A, all had increased virulence potential compared to the R6 strain. Between 20 and 70% of the larvae were affected after 96 h compared to 12% observed with R6. Two type 6B S. pneumoniae strains were more virulent compared to the other strains. S. pneumoniae R6 transformants producing the type 6B capsule showed a similar elevated disease potential, confirming the contribution of the pneumococcal polysaccharide capsule to virulence in M. sexta.

1.
Aballay A, Ausubel FM: Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol 2002;5:97–101.
[PubMed]
2.
Alloing G, Granadel C, Morrison DA, Claverys JP: Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Mol Microbiol 1996;21:471–478.
[PubMed]
3.
Andrenacci D, Grimaldi MR, Panetta V, Riano E, Rugarli EI, Graziani F: Functional dissection of the Drosophila Kallmann’s syndrome protein DmKal-1. BMC Genet 2006;7:47.
[PubMed]
4.
Austrian R: Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis 1981;3:S1–S17.
[PubMed]
5.
Avery OT, Dubos R: The protective action of a specific enzyme against type III pneumococcus infection in mice. J Exp Med 1931;54:73–89.
[PubMed]
6.
Baumgartner S, Martin D, Hagios C, Chiquet-Ehrismann R: Tenm, a Drosophila gene related to tenascin, is a new pair-rule gene. EMBO J 1994;13:3728–3740.
[PubMed]
7.
Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Kaltoft MS, Barrell B, Reeves PR, Parkhill J, Spratt BG: Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2006;2:e31.
[PubMed]
8.
Birnboim HD, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 1979;7:1513–1523.
[PubMed]
9.
Bogaert D, de Groot R, Hermans PW: Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004;4:144–154.
[PubMed]
10.
Bratcher PE, Park IH, Hollingshead SK, Nahm MH: Production of a unique pneumococcal capsule serotype belonging to serogroup 6. Microbiology 2009;155:576–583.
[PubMed]
11.
Brückner R, Nuhn M, Reichmann P, Weber B, Hakenbeck R: Mosaic genes and mosaic chromosomes – genomic variation in Streptococcus pneumoniae. Int J Med Microbiol 2004;294:157–168.
[PubMed]
12.
Bruyn GA, Zegers BJ, Van Furth R: Mechanisms of host defense against infection with Streptococcus pneumoniae. Clin Infect Dis 1992;14:251–262.
[PubMed]
13.
Butler JC, Breiman RF, Lipman HB, Hofmann J, Facklam RR: Serotype distribution of Streptococcus pneumoniae infections among preschool children in the United States, 1978–1994: implications for development of a conjugate vaccine. J Infect Dis 1995;171:885–889.
[PubMed]
14.
Cartwright K: Pneumococcal disease in Western Europe: burden of disease, antibiotic resistance and management. Eur J Pediatr 2002;161:188–195.
[PubMed]
15.
Chen JD, Morrison DA: Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene 1988;64:155–164.
[PubMed]
16.
Chi F, Nolte O, Bergmann C, Ip M, Hakenbeck R: Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in S. pneumoniae, S. mitis and S. oralis. Int J Med Microbiol 2007;297:503–512.
[PubMed]
17.
Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV: Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 2002;296:359–362.
[PubMed]
18.
De Saizieu A, Gardes C, Flint N, Mitchell TJ, Amrein KE, Lange R: Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol 2000;182:4696–4703.
[PubMed]
19.
Denapaite D, Brückner R, Nuhn M, Reichmann P, Henrich B, Maurer P, Schähle Y, Selbmann P, Zimmermann W, Wambutt R, Hakenbeck R: The genome of Streptococcus mitis B6 – what is a commensal? PLoS One 2010;5:e9426.
[PubMed]
20.
Desbois AP, Coote PJ: Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 2011;66:1785–1790.
[PubMed]
21.
Devriese LA, Pot B, Collins MD: Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J Appl Bacteriol 1993;75:399–408.
[PubMed]
22.
Dubos RJ: The Professor, the Institute, and DNA. New York, Rockefeller University Press, 1976.
23.
Evans BA, Rozen DE: A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella. Eur J Clin Microbiol Infect Dis 2012;31:2653–2660.
[PubMed]
24.
Filipe SR, Tomasz A, Ligoxygakis P: Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 2005;6:327–333.
[PubMed]
25.
Garcia-Lara J, Needham AJ, Foster SJ: Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host-pathogen interaction. FEMS Immunol Med Microbiol 2005;43:311–323.
[PubMed]
26.
Giebink GS, Berzins IK, Marker SC, Schiffman G: Experimental otitis media after nasal inoculation of Streptococcus pneumoniae and influenza A virus in chinchillas. Infect Immun 1980;30:445–450.
[PubMed]
27.
Gratecos D, Naidet C, Astier M, Thiery JP, Semeriva M: Drosophila fibronectin: a protein that shares properties similar to those of its mammalian homologue. EMBO J 1988;7:215–223.
[PubMed]
28.
Griffith F: The significance of pneumococcal types. J Hyg (Lond) 1928;27:113–159.
[PubMed]
29.
Hakenbeck R, Balmelle N, Weber B, Gardes C, Keck W, de Saizieu A: Mosaic genes and mosaic chromosomes: intra- and interspecies variation of Streptococcus pneumoniae. Infect Immun 2001;69:2477–2486.
[PubMed]
30.
Hakenbeck R, König A, Kern I, van der Linden M, Keck W, Billot-Klein D, Legrand R, Schoot B, Gutmann L: Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level β-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J Bacteriol 1998;180:1831–1840.
[PubMed]
31.
Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra R, I, Kusuhara H, Santa T, Sekimizu K: Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 2004;48:774–779.
[PubMed]
32.
Hausdorff WP, Bryant J, Kloek C, Paradiso PR, Siber GR: The contribution of specific pneumococcal serogroups to different disease manifestations: implications for conjugate vaccine formulation and use, part II. Clin Infect Dis 2000;30:122–140.
[PubMed]
33.
Hava DL, Camilli A: Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 2002;45:1389–1406.
[PubMed]
34.
Henrichsen J: Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol 1995;33:2759–2762.
[PubMed]
35.
Henriques-Normark B: Molecular epidemiology and mechanisms for antibiotic resistance in Streptococcus pneumoniae; in Hakenbeck R, Chhatwal GS (eds): Molecular Biology of Streptococci. Wymondham, Horizon Press, 2007, pp 269–290
36.
Hoffman HL, Klepser ME, Ernst EJ, Petzold CR, Sa’adah LM, Doern GV: Influence of macrolide susceptibility on efficacies of clarithromycin and azithromycin against Streptococcus pneumoniae in a murine lung infection model. Antimicrob Agents Chemother 2003;47:739–746.
[PubMed]
37.
Holmes AR, McNab R, Millsap KW, Rohde M, Hammerschmidt S, Mawdsley JL, Jenkinson HF: The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol Microbiol 2001;41:1395–1408.
[PubMed]
38.
Huber AH, Wang YM, Bieber AJ, Bjorkman PJ: Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 Å. Neuron 1994;12:717–731.
[PubMed]
39.
Iannelli F, Pearce BJ, Pozzi G: The type 2 capsule locus of Streptococcus pneumoniae. J Bacteriol 1999;181:2652–2654.
[PubMed]
40.
Kaito C, Akimitsu N, Watanabe H, Sekimizu K: Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog 2002;32:183–190.
[PubMed]
41.
Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, Sekimizu K: Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol Microbiol 2005;56:934–944.
[PubMed]
42.
Kanost MR, Jiang H, Yu XQ: Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 2004;198:97–105.
[PubMed]
43.
Knudsen JD, Frimodt-Moller N, Espersen F: Experimental Streptococcus pneumoniae infection in mice for studying correlation of in vitro and in vivo activities of penicillin against pneumococci with various susceptibilities to penicillin. Antimicrob Agents Chemother 1995;39:1253–1258.
[PubMed]
44.
König A, Reinert RR, Hakenbeck R: Streptococcus mitis with unusual high level resistance to β-lactam antibiotics. Microb Drug Resist 1998;4:45–49.
[PubMed]
45.
Lacks S, Hotchkiss RD: A study of the genetic material determining an enzyme activity in pneumococcus. Biochim Biophys Acta 1960;39:508–517.
[PubMed]
46.
Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME: Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 2007;297:503–512.
47.
Lux T, Nuhn M, Hakenbeck R, Reichmann P: Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae. J Bacteriol 2007;189:7741–7751.
[PubMed]
48.
Ma C, Kanost MR: A β1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J Biol Chem 2000;275:7505–7514.
[PubMed]
49.
Maiden MC, Bygraves JA, Feil E, Morelli G, Russel JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG: Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998;95:3140–3145.
[PubMed]
50.
Mascher T, Merai M, Balmelle N, de Saizieu A, Hakenbeck R: The Streptococcus pneumoniaecia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 2003;185:60–70.
[PubMed]
51.
Mayer U, Mann K, Fessler LI, Fessler JH, Timpl R: Drosophila laminin binds to mammalian nidogen and to heparan sulfate proteoglycan. Eur J Biochem 1997;245:745–750.
[PubMed]
52.
Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298–300.
[PubMed]
53.
Mitchell TJ: The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol 2003;1:219–230.
[PubMed]
54.
Mylonakis E, Aballay A: Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect Immun 2005;73:3833–3841.
[PubMed]
55.
Needham AJ, Kibart M, Crossley H, Ingham PW, Foster SJ: Drosophila melanogaster as a model host for Staphylococcus aureus infection. Microbiology 2004;150:2347–2355.
[PubMed]
56.
Noske N, Kammerer U, Rohde M, Hammerschmidt S: Pneumococcal interaction with human dendritic cells: phagocytosis, survival, and induced adaptive immune response are manipulated by PavA. J Immunol 2009;183:1952–1963.
[PubMed]
57.
Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM: Virulence of serotype M3 group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2011;2:111–119.
[PubMed]
58.
Pai R, Gertz RE, Beall B: Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol 2006;44:124–131.
[PubMed]
59.
Park IH, Pritchard DG, Cartee R, Brandao A, Brandileone MC, Nahm MH: Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Microbiol 2007;45:1225–1233.
[PubMed]
60.
Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D: Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 1998;66:5620–5629.
[PubMed]
61.
Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim KS, Jenkinson HF, Nau R, Hammerschmidt S: PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infect Immun 2005;73:2680–2689.
[PubMed]
62.
Reichmann P, Hakenbeck R: Allelic variation in a peptide-inducible two component system of Streptococcus pneumoniae. FEMS Microbiol Lett 2000;190:231–236.
[PubMed]
63.
Reichmann P, Varon E, Günther E, Reinert RR, Lütticken R, Marton A, Geslin P, Wagner J, Hakenbeck R: Penicillin-resistant Streptococcus pneumoniae in Germany: genetic relationship to clones from other European countries. J Med Microbiol 1995;43:377–385.
[PubMed]
64.
Sandgren A, Albiger B, Orihuela CJ, Tuomanen E, Normark S, Henriques-Normark B: Virulence in mice of pneumococcal clonal types with known invasive disease potential in humans. J Infect Dis 2005;192:791–800.
[PubMed]
65.
Sibold C, Henrichsen J, König A, Martin C, Chalkley L, Hakenbeck R: Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol Microbiol 1994;12:1013–1023.
[PubMed]
66.
Sibold C, Wang J, Henrichsen J, Hakenbeck R: Genetic relationship of penicillin-susceptible and -resistant Streptococcus pneumoniae strains isolated on different continents. Infect Immun 1992;60:4119–4126.
[PubMed]
67.
Silva CP, Waterfield NR, Daborn PJ, Dean P, Chilver T, Au CP, Sharma S, Potter U, Reynolds SE, Ffrench-Constant RH: Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell Microbiol 2002;4:329–339.
[PubMed]
68.
Silva NA, McCluskey J, Jefferies JM, Hinds J, Smith A, Clarke SC, Mitchell TJ, Paterson GK: Genomic diversity between strains of the same serotype and multilocus sequence type among pneumococcal clinical isolates. Infect Immun 2006;74:3513–3518.
[PubMed]
69.
Smith MD, Guild WR: A plasmid in Streptococcus pneumoniae. J Bacteriol 1979;137:735–739.
[PubMed]
70.
Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM: Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 2001;293:498–506.
[PubMed]
71.
Throup JP, Koretke KK, Bryant AP, Ingraham KA, Chalker AF, Ge Y, Marra A, Wallis NG, Brown JR, Holmes DJ, Rosenberg M, Burnham KR: A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol 2000;35:566–576.
[PubMed]
72.
Varvio SL, Auranen K, Arjas E, Makela PH: Evolution of the capsular regulatory genes in Streptococcus pneumoniae. J Infect Dis 2009;200:1144–1151.
[PubMed]
73.
Watson DA, Musher DM: A brief history of the pneumococcus in biomedical research. Semin Respir Infect 1999;14:198–208.
[PubMed]
74.
Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, Van Sinderen D, Kok J: Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 2007;189:3256–3270.
[PubMed]
75.
Weinberger DM, Trzcinski K, Lu YJ, Bogaert D, Brandes A, Galagan J, Anderson PW, Malley R, Lipsitch M: Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog 2009;5:e1000476.
[PubMed]
76.
Xuan D, Banevicius M, Capitano B, Kim MK, Nightingale C, Nicolau D: Pharmacodynamic assessment of ertapenem (MK-0826) against Streptococcus pneumoniae in a murine neutropenic thigh infection model. Antimicrob Agents Chemother 2002;46:2990–2995.
[PubMed]
77.
Yanish-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pCU19 vectors. Gene 1985;33:103–119.
[PubMed]
78.
Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D: Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;163:1–5.
[PubMed]
79.
Yu XQ, Zhu YF, Ma C, Fabrick JA, Kanost MR: Pattern recognition proteins in Manduca sexta plasma. Insect Biochem Mol Biol 2002;32:1287–1293.
[PubMed]
You do not currently have access to this content.