The genome of the major intestinal archaeon Methanobrevibacter smithii contains a complex gene system coding for carbamoyl phosphate synthetase (CPSase) composed of both full-length and reduced-size synthetase subunits. These ammonia-metabolizing enzymes could play a key role in controlling ammonia assimilation in M. smithii, affecting the metabolism of gut bacterial microbiota, with an impact on host obesity. In this study, we isolated and characterized the small (41 kDa) CPSase homolog from M. smithii. The gene was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was purified in one step. Chemical cross-linking and size exclusion chromatography indicated a homodimeric/tetrameric structure, in accordance with a dimer-based CPSase activity and reaction mechanism. This small enzyme, MS-s, synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia and catalyzed the same ATP-dependent partial reactions observed for full-length CPSases. Steady-state kinetics revealed a high apparent affinity for ATP and ammonia. Sequence comparisons, molecular modeling, and kinetic studies suggest that this enzyme corresponds to one of the two synthetase domains of the full-length CPSase that catalyze the ATP-dependent phosphorylations involved in the three-step synthesis of carbamoyl phosphate. This protein represents the smallest naturally occurring active CPSase characterized thus far. The small M. smithii CPSase appears to be specialized for carbamoyl phosphate metabolism in methanogens.

1.
Ahuja A, Purcarea C, Guy HI, Evans DR: A novel carbamoyl phosphate synthetase from Aquifex aeolicus. J Biol Chem 2001;276:45694–45703.
2.
Alonso E, Rubio V: Affinity cleavage of carbamoyl-phosphate synthetase I localizes regions of the enzyme interacting with the molecule of ATP that phosphorylates carbamate. Eur J Biochem 1995;229:377–384.
3.
Anderson PM: Carbamoyl-phosphate synthetase: an example of effects on enzyme properties of shifting an equilibrium between active monomer and active oligomer. Biochemistry 1986;25:5576–5582.
4.
Anderson PM, Meister A: Evidence for an activated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry 1965;4:2803–2809.
[PubMed]
5.
Balch WE, Fox GE, Magrum LJ, Woese CL, Wolf RS: Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260–296.
[PubMed]
6.
Belay N, Johnson R, Rajagopal BS, De Macario ES, Daniels L: Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 1988;54:600–603.
7.
Belay N, Mukhopadhyay B, De Macario EC, Galask R, Daniels L: Methanogenic bacteria in human vaginal samples. J Clin Microbiol 1990;28:1666–1668.
8.
Buck S, Hansen EE: Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 2007;104:10643–10648.
9.
Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb FJ, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghangen NS, Venter JC: Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996;273:1058–1073.
[PubMed]
10.
Colovos C, Yeates TO: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993;2:1511–1519.
11.
Davies GE, Stark GR: Dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci USA 1970;66:651–656.
12.
Dridi B, Raoult D, Drancourt M: Archaea as emerging organisms in complex human microbiomes. Anaerobe 2011;17:56–63.
13.
Durbecq V, Legrain C, Roovers M, Piérard A, Glansdorff N: The carbamate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeon Pyrococcus furiosus, a missing link in the evolution of carbamoyl phosphate biosynthesis. Proc Natl Acad Sci USA. 1997;94:12803–12808.
14.
Fiser A, Sali A: ModLoop: automated modeling of loops in protein structures. Bioinformatics 2003;19:2500–2501.
15.
Fresquet V, Mora P, Rochera L, Ramón-Maiques S, Rubio V, Cervera J: Site-directed mutagenesis of the regulatory domain of Escherichia coli carbamoyl phosphate synthetase identifies crucial residues for allosteric regulation and for transduction of the regulatory signals. J Mol Biol 2000:299:979–991.
16.
Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997;18:2714–2723.
[PubMed]
17.
Guillou F, Rubino SD, Markovitz RS, Kinney DM, Lusty CJ: Escherichia coli carbamoyl-phosphate synthetase: domains of glutaminase and synthetase subunit interaction. Proc Natl Acad Sci USA 1989;86:8304–8308.
18.
Guy HI, Bouvier A, Evans DR: The smallest carbamoyl-phosphate synthetase. J Biol Chem 1997;272:29255–29262.
19.
Guy HI, Evans DR: Function of the major synthetase subdomains of carbamyl-phosphate synthetase. J Biol Chem 1996;271:13762–13769.
20.
Guy HI, Schmitt B, Hervé G, Evans DR: Pressure-induced dissociation of carbamoyl-phosphate synthetase domains: the catalytically active form is dimeric. J Biol Chem 1998;273:14172–14178.
21.
Horz HP, Conrads G: The discussion goes on: what is the role of Euryarchaeota in humans. Archaea DOI: 10.1155/2010/967271.
22.
Huang X, Raushel FM: An engineered blockage within the ammonia tunnel of carbamoyl phosphate synthetase prevents the use of glutamine as a substrate but not ammonia. Biochemistry 2000;39:3240–3247.
23.
Kim J, Raushel FM: Allosteric control of the oligomerization of carbamoyl phosphate synthetase from Escherichia coli. Biochemistry 2001;40:11030–11036.
24.
Kothe M, Purcarea C, Guy HI, Evans DR, Powers-Lee SG: A Novel carbamoyl-phosphate synthetase from Aquifex aeolicus. J Biol Chem 2005;14:37–44.
25.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283–291.
26.
Legrain C, Demarez M, Glansdorff N, Pierard A: Ammonia-dependent synthesis and metabolic channelling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus. Microbiology 1995;141:1093–1099.
27.
Marina A, Uriarte M, Barcelona B, Fresquet V, Cervera J, Rubio V: Carbamate kinase from Enterococcus faecalis and Enterococcus faecium: cloning of the genes, studies on the enzyme expressed in Escherichia coli, and sequence similarity with N-acetyl-l-glutamate kinase. Eur J Biochem 1998;253:280–291.
28.
Meister A: Mechanism and regulation of the glutamine-dependent carbayl phosphate synthetase of Escherichia coli. Adv Enzymol Relat Areas Mol Biol 1989;62:315–374.
29.
Miller TL, Wolin MJ, De Macario EC, Macario AJ: Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 1982;43:227–232.
30.
Million M, Maraninchi M, Henry M., Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D: Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes DOI: 10.1038/ijo.2011.153.
31.
Miran SG, Chang SH, Raushel FM: Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry 1991;30:7901–7909.
32.
Nava GM, Caronero F, Croix JA, Greenberg E, Gaskins HR: Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J DOI: 10.1038/ismej.2011.90.
33.
Nyunoya H, Lusty CJ: The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci USA 1983;80:4629–4633.
34.
Paulus TJ, Switzer RL: Caracterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetase from Bacillus subtilis. J Bacteriol 1979;137:82–91.
[PubMed]
35.
Plottel CS, Blaser MJ: Microbiome and malignancy. Cell Host Microb 2011;10:324–335.
36.
Popa E, Rusu A, Zamfir M, Dumitru L, Purcarea C: An ammonia-metabolizing enzyme from the human archaeon Methanobrevibacter smithii might represent a missing link in the evolution of carbamoyl phosphate synthetases. Biotechnol Biotechnol Equip 2009;23:533–537.
37.
Post LE, Post DJ, Raushel FM: Dissection of the functional domains of Escherichia coli carbamoyl phosphate synthetase by site-directed mutagenesis. J Biol Chem 1990;265:7742–7747.
38.
Purcarea C, Ahuja A, Lu T, Kovari L, Guy HI, Evans DR: Aquifex aeolicus aspartate transcarbamoylase, an enzyme specialized for the efficient utilization of unstable carbamoyl phosphate at elevated temperature. J Biol Chem 2003;278:52924–52934.
39.
Purcarea C, Hervé G, Cunin R, Evans DR: Cloning, expression and structure analysis of carbamat kinase-like carbamoyl phosphate synthetase from Pyrococcus abyssi. Extremophiles 2001;5:229–239.
[PubMed]
40.
Purcarea C, Simon V, Prieur D, Hervé G: Purification and characterization of carbamylphosphate synthetase from the deep-sea hyperthermophilic archaebacterium Pyrococcus abyssi. Eur J Biochem 1996;236:189–199.
41.
Rubio V, Cervera J: The carbamoyl-phosphat synthetase family and carbamate kinase: structure-function studies. Biochem Soc Trans 1995;23:879–883.
42.
Rubio V, Cervera J, Lusty CJ, Bendala E, Britton HG. Domain structure of the large subunit of Escherichia coli carbamoyl phosphate synthetase: location of the binding site for the allosteric inhibitor UMP in the COOH-terminal domain. Biochemistry 1991 30:1068–1075.
43.
Rubio SD, Nyunoya H, Lusty CJ: In vivo synthesis of carbamyl phosphate from NH3 by the large subunit of Escherichia coli carbamyl phosphate synthetase. J Biol Chem 1987;262:4382–4386.
44.
Šali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779–815.
[PubMed]
45.
Samuel BS, Gordon JI: A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 2006;103:10011–10016.
46.
Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI: Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 2007;104:10643–10648.
47.
Sippl MJ: Recognition of errors in three-dimensional structures of proteins. Proteins 1993;17:355–362.
[PubMed]
48.
Stams AJ: Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 1994;66:271–294.
49.
Thoden JB, Holden HM, Wesenberg G, Raushel FM, Rayment I: The structure of carbamoyl phosphate synthetase: a journey of 96 Å from substrate to product. Biochemistry 1997;36:6305–6316.
50.
Thoden JB, Wesenberg G, Raushel FM, Holden HM: Carbamoyl phosphate synthetase: closure of the B-domain as a result of nucleotide binding. Biochemistry 1999;38:2347–2357.
51.
Trotta PP, Burt ME, Haschemeyer RH, Meister A: Reversible dissociation of carbamyl phosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc Natl Acad Sci USA 1971;68:2599–2603.
52.
Uriarte M, Marina A, Ramon-Maiques S, Rubio V, Durbecq V, Legrain C, N. Glansdorff N: Carbamoyl phosphate synthesis: carbamate kinase from Pyrococcus furiosus. Methods Enzymol 2001;331:236–247.
53.
Yang H, Park SM, Nolan WG, Lu CD, Abdelal AT: Cloning and characterization of the arginine-specific carbamoyl-phosphate synthetase from Bacillus stearothermophilus. Eur J Biochem 1997;249:443–449.
You do not currently have access to this content.