Bacillus thuringiensis is classified into serovars on the basis of H-flagellar antigens. Several alternative typing methods have been described. Among them, a B. cereus group-specific repetitive extragenic palindromic (Rep)-PCR fingerprinting technique was shown to be discriminative and able to identify B. thuringiensis serovars. The aim of this study was to investigate the genomic diversity and relationship among B. thuringiensis strains collected from different Argentinean ecosystems. Thirty-seven B. thuringiensis reference strains and 131 Argentinean isolates were analyzed using a B. cereus group-specific Rep-PCR. Fourteen different patterns were identified among the Argentinean isolates. Eight could not be associated to any pattern obtained from a reference strain. The pattern identical to the serovar kurstaki HD-1 strain was the most frequently identified in 68 native isolates. The profiles allowed tracing a single dendrogram with two groups and eight main lineages. Some strains showed distinctive patterns despite belonging to the same serovar. An intraspecific diversity resulted from this analysis that was highlighted by this technique since strains from a given serovar showed distinct profiles. This study may help to establish a system of B. thuringiensis classification with a higher discrimination level than established by the H antigen serotyping.

1.
Cherif A, Ettoumi B, Raddadi N, Daffonchio D, Boudabous A: Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can J Microbiol 2007;53:343–350.
[PubMed]
2.
de Barjac H, Bonnefoi A: Essai de classification biochimique et serologique de 24 souches de Bacillus du type B. thuringiensis. Entomophage 1962;7:5–31.
3.
de Barjac H, Bonnefoi A: Mise au point sur la classificationdes Bacillus thuringiensis. Entomophage 1973;18:5–17.
4.
Deplano A, Schuermans A, Van Eldere J, Witte W, Meugnier H, Etienne J, Grundmann H, Jonas D, Noordhoek G, Dijkstra J, van Belkum A, van Leeuwen W, Tassios P, Legakis N, van der Zee A, Bergmans A, Blanc D, Tenover F, Cookson B, O’Neil G, Struelens M: Multicenter evaluation of epidemiological typing of methicillin-resistant Staphylococcus aureus strains by repetitive-element PCR analysis: the European Study Group on Epidemiological Markers of the ESCMID. J Clin Microbiol2000;38:3527–3533.
[PubMed]
5.
Gavira Rivera A, Priest F: Pulsed field gel electrophoresis of chromosomal DNA reveals a clonal population structure to Bacillus thuringiensis that relates in general to crystal protein gene content. FEMS Microbiol Lett 2003a;223:61–66.
[PubMed]
6.
Gavira Rivera A, Priest F: Molecular typing of Bacillus thuringiensis serovars by RAPD-PCR. Syst Appl Microbiol 2003b;26:254–261.
[PubMed]
7.
Joung K, Côte J: Phylogenetic analysis of Bacillus thuringiensis serovars based on 16s rRNA gene restriction fragment length polymorphism. J Appl Microbiol 2001;90:115–122.
[PubMed]
8.
Jung M, Paek W, Park I, Han J, Sin Y, Paek J, Rhee M, Kim H, Song H, Chang Y: Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J Microbiol 2010;48:867–871.
[PubMed]
9.
Khyami-Horani H, Hajaij M, Charles J: Characterization of Bacillus thuringiensis ser. jordanica (serotype H 71), a novel serovariety isolated in Jordan. Curr Microbiol 2003;47:26–31.
[PubMed]
10.
La Duc M, Satomi M, Agata N, Venkateswaram K: gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J Microbiol Methods 2004;56:383–394.
[PubMed]
11.
Lecadet M, Frachon E, Cosmao Dumanoir V, Ripouteau H, Hamon S, Laurent P, Thiery I: Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 1999;86:660–672.
[PubMed]
12.
Lima A, Guidelli A, Abreu I, Lemos M: Identification of new isolates of Bacillus thuringiensis using rep-PCR products and δ-endotoxin electron microscopy. Gen Mol Biol 2002;25:225–229.
13.
Manzano M, Giusto C, Iacumin L, Cantoni C, Comi G: Molecular methods to evaluate biodiversity in Bacillus cereus and Bacillus thuringiensis strains from different origins. Food Microbiol 2009;26:259–264.
[PubMed]
14.
Ohba H, Aizawa K: Frequency of acrystalliferous spore-forming bacteria possessing flagellar antigens of Bacillus thuringiensis. J Basic Microbiol 1986;26:185–188.
15.
Peruca A, Vilas-Bôas G, Arantes O: Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Mem Inst Oswaldo Cruz 2008;103:497–500.
[PubMed]
16.
Reyes-Ramirez A, Ibarra J: Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl Environ Microbiol 2005;71:1346–1355.
[PubMed]
17.
Reyes-Ramirez A, Ibarra J: Plasmid patterns of Bacillus thuringiensis type strains. Appl Environ Microbiol 2008;74:125–129.
[PubMed]
18.
Sauka D, Cozzi J, Benintende G: Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antoine van Leeuwenhoek 2005;88:163–165.
19.
Sauka D, Cozzi J, Benintende G: Detection and identification of cry1I genes in Bacillus thuringiensis using polymerase chain reaction and restriction length polymorphism analysis. Curr Microbiol 2006;52:60–63.
[PubMed]
20.
Sauka D, Benintende G: Bacillus thuringiensis: general aspects: an approach to its use in the biological control of lepidopteran insects behaving as agricultural pests. Rev Argent Microbiol2008;40:124–140.
[PubMed]
21.
Xu D, Côte J: Sequence diversity of the Bacillus thuringiensis and Bacillus cereus sensu lato flagellin (H antigen) protein: comparison with H serotype diversity. Appl Environ Microbiol 2006;72:4653–4662.
[PubMed]
22.
Yu J, Tan L, Liu Y, Pang Y: Phylogenetic analysis of Bacillus thuringiensis based on PCR amplified fragment polymorphism of flagellin genes. Curr Microbiol 2002;45:139–143.
[PubMed]
You do not currently have access to this content.