In uremia, accelerated muscle protein degradation results from activation of the ATP-ubiquitin proteasome proteolytic pathway. Like uremia, other conditions (e.g., acidosis and diabetes) activate this pathway in rat muscles and are associated with excess glucocorticoids (GC) and impaired insulin action. To define the stimuli responsible for muscle wasting in IDDM, the roles of glucocorticoids, insulinopenia and acidosis in streptozotocin (STZ) – induced diabetes were studied. Proteolysis in isolated epitrochlearis muscles from acutely (3d) diabetic rats was 52% higher than pair-fed, sham-injected rats; this increase was eliminated by an inhibitor of the proteasome or by blocking ATP synthesis. In muscles of STZ-diabetic rats, the levels of ubiquitin-conjugated proteins and mRNAs encoding ubiquitin, the ubiquitin-carrier protein, E214k and the C3, C5 and C9 proteasome subunits were increased. Transcription of ubiquitin and C3 proteasome subunit genes in muscle was also increased by IDDM. Oral NaHCO3 eliminated acidemia but did not prevent accelerated muscle proteolysis. Corticosterone excretion was higher in IDDM rats and adrenalectomy (ADX) prevented these catabolic responses; physiologic doses of glucorcoticoids restored the excessive protein catabolism in ADX-STZ rats. Giving IDDM rats replacement insulin also normalized protein degradation in muscles. In conclusion, reduced insulin together with physiologic levels of glucocorticoids activate the ubiquitin-proteasome pathway by a mechanism that includes enhancing ubiquitin conjugation and proteolysis by the proteasome. The balance between these stimuli could regulate muscle proteolysis in uremia.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.