Background: The 2019 Science for Dialysis Meeting at Bellvitge University Hospital was devoted to the challenges and opportunities posed by the use of data science to facilitate precision and personalized medicine in nephrology, and to describe new approaches and technologies. The meeting included separate sections for issues in data collection and data analysis. As part of data collection, we presented the institutional ARGOS e-health project, which provides a common model for the standardization of clinical practice. We also pay specific attention to the way in which randomized controlled trials offer data that may be critical to decision-making in the real world. The opportunities of open source software (OSS) for data science in clinical practice were also discussed. Summary: Precision medicine aims to provide the right treatment for the right patients at the right time and is deeply connected to data science. Dialysis patients are highly dependent on technology to live, and their treatment generates a huge volume of data that has to be analysed. Data science has emerged as a tool to provide an integrated approach to data collection, storage, cleaning, processing, analysis, and interpretation from potentially large volumes of information. This is meant to be a perspective article about data science based on the experience of the experts invited to the Science for Dialysis Meeting and provides an up-to-date perspective of the potential of data science in kidney disease and dialysis. Key messages: Healthcare is quickly becoming data-dependent, and data science is a discipline that holds the promise of contributing to the development of personalized medicine, although nephrology still lags behind in this process. The key idea is to ensure that data will guide medical decisions based on individual patient characteristics rather than on averages over a whole population usually based on randomized controlled trials that excluded kidney disease patients. Furthermore, there is increasing interest in obtaining data about the effectiveness of available treatments in current patient care based on pragmatic clinical trials. The use of data science in this context is becoming increasingly feasible in part thanks to the swift developments in OSS.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.