Background: Autosomal dominant polycystic kidney disease (PKD) or autosomal recessive PKD is caused by a mutation in the PKD1, PKD2 or PKHD1 gene, which encodes polycystin-1, polycystin-2 or fibrocystin, respectively. Embryonic and postnatal mutation studies show that transport or channel function is dysregulated before the initiation of cystogenesis, suggesting that the abnormality of transport or channel function plays a critical role in the pathology of PKD. Summary: Polycystin-2 by itself is a calcium-permeable cation channel, and its channel function can be regulated by polycystin-1 or fibrocystin. In this paper, we reviewed the current knowledge about calcium transports and cyclic adenosine monophosphate (cAMP)-driven chloride transports in PKD. In addition, the function and the underlining mechanism of glucose transporters, phosphate transporters and water channels in PKD are also discussed. Key Messages: Abnormalities in calcium handling and exuberant cAMP-dependent cystic fibrosis transmembrane conductance regulator-mediated fluid secretion in the collecting duct are the most important issues in the pathogenesis of PKD.

1.
Paul BM, Vanden Heuvel GB: Kidney: polycystic kidney disease. Wiley Interdiscip Rev Dev Biol 2014;3:465-487.
2.
Grantham JJ: Rationale for early treatment of polycystic kidney disease. Pediatr Nephrol 2015;30:1053-1062.
3.
Verani RR, Silva FG: Histogenesis of the renal cysts in adult (autosomal dominant) polycystic kidney disease: a histochemical study. Mod Pathol 1988;1:457-463.
4.
Grantham JJ, Mulamalla S, Swenson-Fields KI: Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 2011;7:556-566.
5.
Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG: A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 2007;13:1490-1495.
6.
Ahrabi AK, Jouret F, Marbaix E, Delporte C, Horie S, Mulroy S, et al: Glomerular and proximal tubule cysts as early manifestations of Pkd1 deletion. Nephrol Dial Transplant 2010;25:1067-1078.
7.
Torres VE, Harris PC: Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 2014;25:18-32.
8.
Abdi A, Mazzocco C, Legeron FP, Yvert B, Macrez N, Morel JL: TRPP2 modulates ryanodine- and inositol-1,4,5-trisphosphate receptors-dependent Ca2+ signals in opposite ways in cerebral arteries. Cell Calcium 2015;58:467-475.
9.
Yamaguchi T, Hempson SJ, Reif GA, Hedge AM, Wallace DP: Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J Am Soc Nephrol 2006;17:178-187.
10.
Yang J, Zhang S, Zhou Q, Guo H, Zhang K, Zheng R, Xiao C: PKHD1 gene silencing may cause cell abnormal proliferation through modulation of intracellular calcium in autosomal recessive polycystic kidney disease. J Biochem Mol Biol 2007;40:467-474.
11.
Tsiokas L, Kim S, Ong EC: Cell biology of polycystin-2. Cell Signal 2007;19:444-453.
12.
Streets AJ, Wessely O, Peters DJ, Ong AC: Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. Hum Mol Genet 2013;22:1924-1939.
13.
Fu X, Wang Y, Schetle N, Gao H, Putz M, von Gersdorff G, et al: The subcellular localization of TRPP2 modulates its function. J Am Soc Nephrol 2008;19:1342-1351.
14.
Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, et al: Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 2005;24:705-716.
15.
Streets AJ, Moon DJ, Kane ME, Obara T, Ong AC: Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet 2006;15:1465-1473.
16.
Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, et al: The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 2002;30:259-269.
17.
Kim I, Li C, Liang D, Chen XZ, Coffy RJ, Ma J, et al: Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem 2008;283:31559-31566.
18.
Wu Y, Dai XQ, Li Q, Chen CX, Mai W, Hussain Z, et al: Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum Mol Genet 2006;15:3280-3292.
19.
Kim I, Fu Y, Hui K, Moeckel G, Mai W, Li C, et al: Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 2008;19:455-468.
20.
Harris PC, Torres VE: Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 2014;124:2315-2324.
21.
Anyatonwu GI, Estrada M, Tian X, Somlo S, Ehrlich BE: Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Natl Acad Sci USA 2007;104:6454-6459.
22.
Kuo IY, Kwaczala AT, Nguyen L, Russell KS, Campbell SG, Ehrlich BE: Decreased polycystin 2 expression alters calcium-contraction coupling and changes beta-adrenergic signaling pathways. Proc Natl Acad Sci USA 2014;111:16604-16609.
23.
Li Y, Wright JM, Qian F, Germino GG, Guggino WB: Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 2005;280:41298-41306.
24.
Soulsby MD, Wojcikiewicz RJ: The type III inositol 1,4,5-trisphosphate receptor is phosphorylated by cAMP-dependent protein kinase at three sites. Biochem J 2005;392:493-497.
25.
Rajagopal M, Thomas SV, Kathpalia PP, Chen Y, Pao AC: Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells. Am J Physiol Cell Physiol 2014;306:C263-C278.
26.
Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP: Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 1999;96:3934-3939.
27.
Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P: Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep 2008;9:472-479.
28.
Du J, Ding M, Sours-Brothers S, Graham S, Ma R: Mediation of angiotensin II-induced Ca2+ signaling by polycystin 2 in glomerular mesangial cells. Am J Physiol Renal Physiol 2008;294:F909-F918.
29.
Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, et al: TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 2008;182:437-447.
30.
Li Y, Santoso NG, Yu S, Woodward OM, Qian F, Guggino WB: Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem 2009;284:36431-36441.
31.
Morel N, Vandenberg G, Ahrabi AK, Caron N, Desjardins F, Balligand JL, et al: PKD1 haploinsufficiency is associated with altered vascular reactivity and abnormal calcium signaling in the mouse aorta. Pflugers Arch 2009;457:845-856.
32.
Mekahli D, Sammels E, Luyten T, Welkenhuyzen K, van den Heuvel LP, Levtchenko EN, et al: Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release. Cell Calcium 2012;51:452-458.
33.
Jin X, Mohieldin AM, Muntean BS, Green JA, Shah JV, Mykytyn K, Nauli SM: Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 2014;71:2165-2178.
34.
Muntean BS, Jin X, Williams FE, Nauli SM: Primary cilium regulates CaV1.2 expression through Wnt signaling. J Cell Physiol 2014;229:1926-1934.
35.
Jacobsson L, Lindqvist B, Michaelson G, Bjerle P: Fluid turnover in renal cysts. Acta Med Scand 1977;202:327-329.
36.
Mangoo-Karim R, Uchic M, Lechene C, Grantham JJ: Renal epithelial cyst formation and enlargement in vitro: dependence on cAMP. Proc Natl Acad Sci USA 1989;86:6007-6011.
37.
Ye M, Grantham JJ: The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med 1993;329:310-313.
38.
Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ: The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 1996;50:208-218.
39.
O'Sullivan DA, Torres VE, Gabow PA, Thibodeau SN, King BF, Bergstralh EJ: Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis 1998;32:976-983.
40.
Snyder DS, Tradtrantip L, Yao C, Kurth MJ, Verkman AS: Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J Med Chem 2011;54:5468-5477.
41.
Tradtrantip L, Sonawane ND, Namkung W, Verkman AS: Nanomolar potency pyrimido-pyrrolo-quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model. J Med Chem 2009;52:6447-6455.
42.
Magenheimer BS, St John PL, Isom KS, Abrahamson DR, De Lisle RC, Wallace DP, et al: Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na+,K+,2Cl- co-transporter-dependent cystic dilation. J Am Soc Nephrol 2006;17:3424-3437.
43.
Sheppard DN, Welsh MJ: Structure and function of the CFTR chloride channel. Physiol Rev 1999;79(1 suppl):S23-S45.
44.
Sullivan LP, Wallace DP, Grantham JJ: Epithelial transport in polycystic kidney disease. Physiol Rev 1998;78:1165-1191.
45.
Mangoo-Karim R, Ye M, Wallace DP, Grantham JJ, Sullivan LP: Anion secretion drives fluid secretion by monolayers of cultured human polycystic cells. Am J Physiol 1995;269:F381-F388.
46.
Sullivan LP, Wallace DP, Gover T, Welling PA, Yamaguchi T, Maser R, et al: Sulfonylurea-sensitive K+ transport is involved in Cl- secretion and cyst growth by cultured ADPKD cells. J Am Soc Nephrol 2002;13:2619-2627.
47.
Albaqumi M, Srivastava S, Li Z, Zhdnova O, Wulff H, Itani O, et al: KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney Int 2008;74:740-749.
48.
Wallace DP, Rome LA, Sullivan LP, Grantham JJ: cAMP-dependent fluid secretion in rat inner medullary collecting ducts. Am J Physiol Renal Physiol 2001;280:F1019-F1029.
49.
Rinschen MM, Schermer B, Benzing T: Vasopressin-2 receptor signaling and autosomal dominant polycystic kidney disease: from bench to bedside and back again. J Am Soc Nephrol 2014;25:1140-1147.
50.
Rieg T, Tang T, Murray F, Schroth J, Insel PA, Fenton RA, et al: Adenylate cyclase 6 determines cAMP formation and aquaporin-2 phosphorylation and trafficking in inner medulla. J Am Soc Nephrol 2010;21:2059-2068.
51.
Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V: Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol 2013;182:96-106.
52.
Roos KP, Strait KA, Raphael KL, Blount MA, Kohan DE: Collecting duct-specific knockout of adenylyl cyclase type VI causes a urinary concentration defect in mice. Am J Physiol Renal Physiol 2012;302:F78-F84.
53.
Reif GA, Yamaguchi T, Nivens E, Fujiki H, Pinto CS, Wallace DP: Tolvaptan inhibits ERK-dependent cell proliferation, Cl- secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Renal Physiol 2011;301:F1005-F1013.
54.
Wang CJ, Creed C, Winklhofer FT, Grantham JJ: Water prescription in autosomal dominant polycystic kidney disease: a pilot study. Clin J Am Soc Nephrol 2011;6:192-197.
55.
Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al: Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med 2012;367:2407-2418.
56.
Wang X, Gattone V 2nd, Harris PC, Torres VE: Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol 2005;16:846-851.
57.
Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH 2nd: Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med 2004;10:363-364.
58.
Odgaard E, Praetorius HA, Leipziger J: AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct. Am J Physiol Renal Physiol 2009;297:F341-F349.
59.
Jaisser F, Bugeon L, Blot-Chabaud M, Bonvalet JP, Farman N: Effects of AVP and dDAVP on PGE2 synthesis in superfused cortical collecting tubules. Am J Physiol 1989;256:F1044-F1050.
60.
Wilson PD, Hovater JS, Casey CC, Fortenberry JA, Schwiebert EM: ATP release mechanisms in primary cultures of epithelia derived from the cysts of polycystic kidneys. J Am Soc Nephrol 1999;10:218-229.
61.
Buchholz B, Teschemacher B, Schley G, Schillers H, Eckardt KU: Formation of cysts by principal-like MDCK cells depends on the synergy of cAMP- and ATP-mediated fluid secretion. J Mol Med (Berl) 2011;89:251-261.
62.
Rajagopal M, Kathpalia PP, Thomas SV, Pao AC: Activation of P2Y1 and P2Y2 receptors induces chloride secretion via calcium-activated chloride channels in kidney inner medullary collecting duct cells. Am J Physiol Renal Physiol 2011;301:F544-F553.
63.
Cuffe JE, Bielfeld-Ackermann A, Thomas J, Leipziger J, Korbmacher C: ATP stimulates Cl- secretion and reduces amiloride-sensitive Na+ absorption in M-1 mouse cortical collecting duct cells. J Physiol 2000;524:77-90.
64.
Kunzelmann K, Mehta A: CFTR: a hub for kinases and crosstalk of cAMP and Ca2+. FEBS J 2013;280:4417-4429.
65.
Elberg G, Elberg D, Lewis TV, Guruswamy S, Chen L, Logan CJ, et al: EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells. Am J Physiol Renal Physiol 2007;293:F1622-F1632.
66.
Liu Y, Rajagopal M, Lee K, Battini L, Flores D, Gusella GL, et al: Prostaglandin E(2) mediates proliferation and chloride secretion in ADPKD cystic renal epithelia. Am J Physiol Renal Physiol 2012;303:F1425-F1434.
67.
Jansson K, Nguyen AN, Magenheimer BS, Reif GA, Aramadhaka LR, Bello-Reuss E, et al: Endogenous concentrations of ouabain act as a cofactor to stimulate fluid secretion and cyst growth of in vitro ADPKD models via cAMP and EGFR-Src-MEK pathways. Am J Physiol Renal Physiol 2012;303:F982-F990.
68.
Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, et al: Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 2004;66:964-973.
69.
Wallace DP, Reif G, Hedge AM, Thrasher JB, Pietrow P: Adrenergic regulation of salt and fluid secretion in human medullary collecting duct cells. Am J Physiol Renal Physiol 2004;287:F639-F648.
70.
Takiar V, Nishio S, Seo-Mayer P, King JD Jr, Li H, Zhang L, et al: Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci USA 2011;108:2462-2467.
71.
Zanoli L, Granata A, Lentini P, Rastelli S, Fatuzzo P, Rapisarda F, Castellino P: Sodium-glucose linked transporter-2 inhibitors in chronic kidney disease. ScientificWorldJournal 2015;2015:317507.
72.
Wang X, Zhang S, Liu Y, Spichtig D, Kapoor S, Koepsell H, et al: Targeting of sodium-glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats. Kidney Int 2013;84:962-968.
73.
Kapoor S, Rodriguez D, Riwanto M, Edenhofer I, Segerer S, Mitchell K, Wuthrich RP: Effect of sodium-glucose cotransport inhibition on polycystic kidney disease progression in PCK rats. PLoS One 2015;10:e0125603.
74.
Nitta K, Nagano N, Tsuchiya K: Fibroblast growth factor 23/klotho axis in chronic kidney disease. Nephron Clin Pract 2014;128:1-10.
75.
Spichtig D, Zhang H, Mohebbi N, Pavik I, Petzold K, Stange G, et al: Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney Int 2014;85:1340-1350.
76.
Pavik I, Jaeger P, Ebner L, Poster D, Krauer F, Kistler AD, et al: Soluble klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2012;7:248-257.
77.
Devuyst O: The expression of water channels AQP1 and AQP2 in a large series of ADPKD kidneys. Nephron 1998;78:116-117.
78.
Bachinsky DR, Sabolic I, Emmanouel DS, Jefferson DM, Carone FA, Brown D, Perrone RD: Water channel expression in human ADPKD kidneys. Am J Physiol 1995;268:F398.
79.
Noda Y, Sohara E, Ohta E, Sasaki S: Aquaporins in kidney pathophysiology. Nat Rev Nephrol 2010;6:168-178.
80.
Wang W, Li F, Sun Y, Lei L, Zhou H, Lei T, et al: Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J 2015;29:1551-1563.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.