Background: Mitochondria play fundamental roles in cellular metabolism, signaling, and viability. Disruption of mitochondria not only leads to dysfunction of the organelles but also activates mechanisms of cell injury and death, contributing to the pathogenesis of various diseases. Summary: Removal of damaged mitochondria is therefore crucial for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria via autophagy, is an important mechanism of mitochondrial quality control in physiological and pathological conditions. Defects in mitophagy have been implicated in a variety of human disorders, including both acute and chronic kidney diseases. However, the role and regulatory mechanisms of mitophagy in kidney cells and tissues remain largely unknown. Key Message: This review provides updated information on mitophagy and suggests a potential role of mitophagy in renal pathophysiology.

1.
Chandel NS, McClintock DS, Feliciano CE, et al: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000;275:25130-25138.
2.
Kim J, Jang HS, Park KM: Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am J Physiol Renal Physiol 2010;298:F158-F166.
3.
Dobashi K, Ghosh B, Orak JK, Singh I, Singh AK: Kidney ischemia-reperfusion: modulation of antioxidant defenses. Mol Cell Biochem 2000;205:1-11.
4.
Liochev SI: Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 2013;60:1-4.
5.
Watabe M, Nakaki T: Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol Pharmacol 2008;74:933-940.
6.
Brenner C, Moulin M: Physiological roles of the permeability transition pore. Circ Res 2012;111:1237-1247.
7.
Kotiadis VN, Duchen MR, Osellame LD: Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 2014;1840:1254-1265.
8.
Fischer F, Hamann A, Osiewacz HD: Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 2012;37:284-292.
9.
Redmann M, Dodson M, Boyer-Guittaut M, Darley-Usmar V, Zhang J: Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol 2014;53:127-133.
10.
Che R, Yuan Y, Huang S, Zhang A: Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2014;306:F367-F378.
11.
Zhan M, Brooks C, Liu F, Sun L, Dong Z: Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 2013;83:568-581.
12.
Johansen T, Lamark T: Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011;7:279-296.
13.
Kaushik S, Cuervo AM: Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012;22:407-417.
14.
Tooze SA, Yoshimori T: The origin of the autophagosomal membrane. Nat Cell Biol 2010;12:831-835.
15.
Nakatogawa H: Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem 2013;55:39-50.
16.
Jin M, Liu X, Klionsky DJ: SnapShot: Selective autophagy. Cell 2013;152:368-368, e362.
17.
Mizushima N, Levine B: Autophagy in mammalian development and differentiation. Nat Cell Biol 2010;12:823-830.
18.
Murrow L, Debnath J: Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 2013;8:105-137.
19.
Russell RC, Yuan HX, Guan KL: Autophagy regulation by nutrient signaling. Cell Res 2014;24:42-57.
20.
Choi AM, Ryter SW, Levine B: Autophagy in human health and disease. N Engl J Med 2013;368:651-662.
21.
Deretic V, Saitoh T, Akira S: Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013;13:722-737.
22.
Lu H, Li G, Liu L, Feng L, Wang X, Jin H: Regulation and function of mitophagy in development and cancer. Autophagy 2013;9:1720-1736.
23.
de Vries RL, Przedborski S: Mitophagy and Parkinson's disease: be eaten to stay healthy. Mol Cell Neurosci 2013;55:37-43.
24.
Youle RJ, Narendra DP: Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011;12:9-14.
25.
Ashrafi G, Schwarz TL: The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013;20:31-42.
26.
Valente EM, Abou-Sleiman PM, Caputo V, et al: Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304:1158-1160.
27.
Kitada T, Asakawa S, Hattori N, et al: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605-608.
28.
Riley BE, Lougheed JC, Callaway K, et al: Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 2013;4:1982.
29.
Deas E, Plun-Favreau H, Gandhi S, et al: PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 2011;20:867-879.
30.
Geisler S, Holmstrom KM, Skujat D, et al: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature cell biology 2010;12:119-131.
31.
Matsuda N, Sato S, Shiba K, et al: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 2010;189:211-221.
32.
Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 2010;19:4861-4870.
33.
Chen Y, Dorn GW, 2nd: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013;340:471-475.
34.
Kane LA, Lazarou M, Fogel AI, et al: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 2014;205:143-153.
35.
Koyano F, Okatsu K, Kosako H, et al: Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014;510:162-166.
36.
Bingol B, Tea JS, Phu L, et al: The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014;510:370-375.
37.
Hasson SA, Kane LA, Yamano K, et al: High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 2013;504:291-295.
38.
Chu CT, Ji J, Dagda RK, et al: Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 2013;15:1197-1205.
39.
Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ: p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 2010;6:1090-1106.
40.
Wong YC, Holzbaur EL: Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci USA 2014;111:E4439-E4448.
41.
Van Humbeeck C, Cornelissen T, Vandenberghe W: Ambra1:a Parkin-binding protein involved in mitophagy. Autophagy 2011;7:1555-1556.
42.
Strappazzon F, Nazio F, Corrado M, et al: AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 2015;22:419-432.
43.
Orvedahl A, Sumpter R, Jr., Xiao G, et al: Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 2011;480:113-117.
44.
Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR: Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 2013;24:1153-1162.
45.
Lokireddy S, Wijesoma IW, Teng S, et al: The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab 2012;16:613-624.
46.
Yun J, Puri R, Yang H, et al: MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife 2014;3:e01958.
47.
Chen G, Cizeau J, Vande Velde C, et al: Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 1999;274:7-10.
48.
Zhang J, Ney PA: NIX induces mitochondrial autophagy in reticulocytes. Autophagy 2008;4:354-356.
49.
Chen M, Sandoval H, Wang J: Selective mitochondrial autophagy during erythroid maturation. Autophagy 2008;4:926-928.
50.
Sandoval H, Thiagarajan P, Dasgupta SK, et al: Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008;454:232-235.
51.
Novak I, Kirkin V, McEwan DG, et al: Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010;11:45-51.
52.
Bellot G, Garcia-Medina R, Gounon P, et al: Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009;29:2570-2581.
53.
Zhang H, Bosch-Marce M, Shimoda LA, et al: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008;283:10892-10903.
54.
Thomas RL, Kubli DA, Gustafsson AB: Bnip3-mediated defects in oxidative phosphorylation promote mitophagy. Autophagy 2011;7:775-777.
55.
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB: Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 2012;287:19094-19104.
56.
Zhang J, Ney PA: Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 2009;16:939-946.
57.
Liu L, Feng D, Chen G, et al: Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 2012;14:177-185.
58.
Wu W, Tian W, Hu Z, et al: ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep 2014;15:566-575.
59.
Smirnova E, Griparic L, Shurland DL, van der Bliek AM: Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001;12:2245-2256.
60.
Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT: Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 2004;117:1201-1210.
61.
Meeusen S, DeVay R, Block J, et al: Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 2006;127:383-395.
62.
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003;160:189-200.
63.
Brooks C, Dong Z: Regulation of mitochondrial morphological dynamics during apoptosis by Bcl-2 family proteins: a key in Bak? Cell Cycle 2007;6:3043-3047.
64.
Wei Q, Dong G, Chen JK, Ramesh G, Dong Z: Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. Kidney Int 2013;84:138-148.
65.
Archer SL: Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 2013;369:2236-2251.
66.
Brooks C, Wei Q, Cho SG, Dong Z: Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Investig 2009;119:1275-1285.
67.
Twig G, Elorza A, Molina AJ, et al: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008;27:433-446.
68.
Ziviani E, Tao RN, Whitworth AJ: Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 2010;107:5018-5023.
69.
Lee Y, Lee HY, Hanna RA, Gustafsson AB: Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 2011;301: H1924-H1931.
70.
Gomes LC, Scorrano L: High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 2008;1777:860-866.
71.
Bernardi P: The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013;4:95.
72.
Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA: Calcium in cell injury and death. Annu Rev Pathol 2006;1:405-434.
73.
Elmore SP, Qian T, Grissom SF, Lemasters JJ: The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001;15:2286-2287.
74.
Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin RT, Lemasters JJ: Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 2009;5:1099-1106.
75.
Cui T, Fan C, Gu L, et al: Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells. Brain Res 2011;1394:1-13.
76.
Marino G, Niso-Santano M, Baehrecke EH, Kroemer G: Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014;15:81-94.
77.
Kubli DA, Gustafsson AB: Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 2012;111:1208-1221.
78.
Hollville E, Carroll RG, Cullen SP, Martin SJ: Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell 2014;55:451-466.
79.
Wirawan E, Vande Walle L, Kersse K, et al: Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 2010;1:e18.
80.
Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC: Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 2009;274:95-100.
81.
Yousefi S, Perozzo R, Schmid I, et al: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006;8:1124-1132.
82.
Pagliarini V, Wirawan E, Romagnoli A, et al: Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 2012;19:1495-1504.
83.
Zsengeller ZK, Ellezian L, Brown D, et al: Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 2012;60:521-529.
84.
Zhan M, Usman IM, Sun L, Kanwar YS: Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease. J Am Soc Nephrol 2014, Epub ahead of print.
85.
Wang W, Wang Y, Long J, et al: Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 2012;15:186-200.
86.
Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA: In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 2013;83:72-83.
87.
Rehman H, Krishnasamy Y, Haque K, et al: Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS One 2014;8:e65029.
88.
Tamaki M, Miyashita K, Wakino S, Mitsuishi M, Hayashi K, Itoh H: Chronic kidney disease reduces muscle mitochondria and exercise endurance and its exacerbation by dietary protein through inactivation of pyruvate dehydrogenase. Kidney Int 2014;85:1330-1339.
89.
Higgins GC, Coughlan MT: Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol 2014;171:1917-1942.
90.
Sivitz WI, Yorek MA: Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 2010;12:537-577.
91.
Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF: Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 1997;280:638-649.
92.
Forbes JM, Coughlan MT, Cooper ME: Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008;57:1446-1454.
93.
Sanz AB, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A: Mechanisms of renal apoptosis in health and disease. J Am Soc Nephrol 2008;19:1634-1642.
94.
Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z: Regulated cell death in AKI. J Am Soc Nephrol 2014;25:2689-2701.
95.
Ishihara M, Urushido M, Hamada K, et al: Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am J Physiol Renal Physiol 2013;305:F495-F509.
96.
Namba T, Takabatake Y, Kimura T, et al: Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis. J Am Soc Nephrol 2014;25:2254-2266.
97.
Kawakami T, Gomez IG, Ren S, et al: Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol 2014, Epub ahead of print.
98.
Cui J, Shi S, Sun X, et al: Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLoS One 2013;8:e69720.
99.
Mizumura K, Cloonan SM, Nakahira K, et al: Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Investig 2014;124:3987-4003.
100.
Martinou JC, Youle RJ: Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011;21:92-101.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.