Background: Recent studies indicate farnesoid X receptor (FXR) plays an important role in regulating lipid metabolism in kidney disease. The purpose of the present study is to investigate the effect of chenodeoxycholic acid (CDCA), a FXR agonist, on fibrosis, inflammation and oxidative stress in kidney in rats fed on high fructose. Methods: Twenty-four healthy male Wistar rats were randomly divided into three groups (n=8): normal control group, high fructose group and chenodeoxycholic acid group. Rats were sacrificed by the end of 16 weeks after feeding. Blood urea nitrogen, serum creatinine, fast glucose, lipid concentration were observed, spot urine samples were obtained to measure the albumin and creatinine levels. Triglyceride of renal cortices was detected. The mRNA level and protein contents of the fibrosis-inducing growth factor transforming growth factor β1 (TGF-β1) and plasminogen activator inhibitor (PAI-I), inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), oxidative stress index NADPH oxidase 2 (Nox2) and p22phox in kidney were examined. The pathological changes of kidney were examined by PAS staining and immunohistochemical staining. Electron microscope sections were made to measure glomerular basement membrane (GBM) width. Results: Renal injuries including mesangial expansion, GBM thickness and podocyte foot process effacement were found in fructose-fed Wistar rats, FXR agonist CDCA modulates renal lipid metabolism, decreases proteinuria and improves renal fibrosis, inflammation and oxidation stress. High-fructose-feeding may cause lipid nephrotoxicity through down-regulated farnesoid X receptor and increases expression of profibrotic growth factors, proinflammatory cytokines, and oxidative stress in Wistar rats. Conclusion: FXR activation by chenodeoxycholic acid can prevent the injury in kidney induced by high fructose feeding.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.