Mitogen-activated protein (MAP) kinases are important intracellular mediators for proliferation and hypertrophy and therefore may also regulate cardiomyoblast growth in hypertensive heart disease. Thus, the aim of the present study was to examine the activities of MAP kinases, namely extracellular signal-regulated kinase (ERK)1,2, c-Jun NH2-terminal kinases (JNK)1,2 and p38 MAP kinase, in myocardial tissue of 12-week-old Prague normotensive (PNR) and hypertensive rats (PHR), a model of genetic hypertension with marked cardiac hypertrophy. Systolic blood pressure was 121 ± 5 in PNR and 208 ± 15 mm Hg in PHR (p < 0.01). Total heart weight was 247 ± 4 in PNR vs. 316 ± 4 mg/100 g body weight in PHR (p < 0.01). Left and right ventricular weights were 121 ± 5 and 53 ± 3 in PNR vs. 168 ± 4 (p < 0.01) and 57 ± 2 mg/100 g body weight (n.s.) in PHR. Using anti-ERK2 Western blot analysis as well as immunocomplex ERK activity assay, we found no activation of ERK2 in left or right ventricular tissue of PHR and PNR. Similary, p38 MAP kinase phosphorylation and activity were not detectable. In contrast, Western blot analysis using antiphospho-JNK antibodies revealed in myocardial tissue of right and left ventricles significantly greater phosphorylation of JNK2 in PHR than in PNR. This finding was confirmed by immunocomplex JNK activity assay using ATF-2 as substrate, which demonstrated a significant increase in JNK activity in the left ventricle of PHR as compared to PNR (6.4 ± 1.5 vs. 2.5 ± 0.5 OD; each n = 5; p < 0.05). In conclusion, cardiac JNK2 seems to be regulated differently from ERK2 in this rat model. In PHR, as compared to PNR, we found enhanced activity of JNK2 in the left and right ventricles suggesting that JNK2 is involved in hypertensive cardiac disease. The rise in JNK in both ventricles may result indirectly from humoral stimuli, e.g., endothelin-1 and/or angiotensin II, and may contribute to ventricular hypertrophy in this model of spontaneous hypertension.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.