Introduction: The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA). Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-l-arginine methyl ester [L-NAME], 300 µM) for 24 h. EMVs from untreated and L-NAME-treated cells were isolated, quantified, and exposed to HUVECs for 24 h. Results: eNOS-inhibited cells released significantly higher EMVs than untreated cells (81 ± 13 vs. 41 ± 15 EMV/μL; p = 0.005). Expression of total eNOS (97.1 ± 16.4 vs. 157.5 ± 31.2 arbitrary units [AUs]; p = 0.01), p-eNOS (4.9 ± 1.2 vs. 9.1 ± 12.6 AUs; p = 0.02), and NO production (5.0 ± 0.8 vs. 7.0 ± 1.3 µmol/L; p = 0.04) were significantly lower in cells treated with EMVs from L-NAME-treated cells. L-NAME-derived EMVs induced significantly higher IL-6 (38.3 ± 10.3 vs. 21.0 ± 3.8 pg/mL; p = 0.01) and IL-8 (38.9 ± 7.0 vs. 27.2 ± 6.2 pg/mL; p = 0.04) production concurrent with higher expression of p-NF-κB p65 (Ser536) (9.7 ± 1.6 vs. 6.1 ± 1.2 AUs; p = 0.01). Expression of activated caspase-3 was higher (9.5 ± 1.1 vs. 6.4 ± 0.4 AUs) and t-PA lower (24.2 ± 4.3 vs. 36.2 ± 8.4 AUs; p = 0.04) in cells treated with L-NAME-derived EMVs. Conclusion: eNOS inhibition induces an increase in EMV release and an EMV phenotype with adverse cellular effects.

1.
Tran
N
,
Garcia
T
,
Aniqa
M
,
Ali
S
,
Ally
A
,
Nauli
SM
.
Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: in physiology and in disease states
.
Am J Biomed Sci Res
.
2022
;
15
(
2
):
153
77
.
2.
Oliveira-Paula
GH
,
Lacchini
R
,
Tanus-Santos
JE
.
Endothelial nitric oxide synthase: from biochemistry and gene structure to clinical implications of NOS3 polymorphisms
.
Gene
.
2016
;
575
(
2 Pt 3
):
584
99
.
3.
Jeremy
JY
,
Rowe
D
,
Emsley
AM
,
Newby
AC
.
Nitric oxide and the proliferation of vascular smooth muscle cells
.
Cardiovasc Res
.
1999
;
43
(
3
):
580
94
.
4.
Alheid
U
,
Frölich
JC
,
Förstermann
U
.
Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets
.
Thromb Res
.
1987
;
47
(
5
):
561
71
.
5.
Heiss
C
,
Rodriguez-Mateos
A
,
Kelm
M
.
Central role of eNOS in the maintenance of endothelial homeostasis
.
Antioxid Redox Signal
.
2015
;
22
(
14
):
1230
42
.
6.
Dimmeler
S
,
Zeiher
AM
.
Nitric oxide-an endothelial cell survival factor
.
Cell Death Differ
.
1999
;
6
(
10
):
964
8
.
7.
Theofilis
P
,
Sagris
M
,
Oikonomou
E
,
Antonopoulos
AS
,
Siasos
G
,
Tsioufis
C
, et al
.
Inflammatory mechanisms contributing to endothelial dysfunction
.
Biomedicines
.
2021
;
9
(
7
):
781
.
8.
Chen
Y
,
Li
G
,
Liu
M-L
.
Microvesicles as emerging biomarkers and therapeutic targets in cardiometabolic diseases
.
Genomics Proteomics Bioinformatics
.
2018
;
16
(
1
):
50
62
.
9.
Rautou
P-E
,
Vion
A-C
,
Amabile
N
,
Chironi
G
,
Simon
A
,
Tedgui
A
, et al
.
Microparticles, vascular function, and atherothrombosis
.
Circ Res
.
2011
;
109
(
5
):
593
606
.
10.
Lovren
F
,
Verma
S
.
Evolving role of microparticles in the pathophysiology of endothelial dysfunction
.
Clin Chem
.
2013
;
59
(
8
):
1166
74
.
11.
Berezin
A
,
Zulli
A
,
Kerrigan
S
,
Petrovic
D
,
Kruzliak
P
.
Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases
.
Clin Biochem
.
2015
;
48
(
9
):
562
8
.
12.
Jimenez
JJ
,
Jy
W
,
Mauro
LM
,
Soderland
C
,
Horstman
LL
,
Ahn
YS
.
Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis
.
Thromb Res
.
2003
;
109
(
4
):
175
80
.
13.
Williams
JB
,
Jauch
EC
,
Lindsell
CJ
,
Campos
B
.
Endothelial microparticle levels are similar in acute ischemic stroke and stroke mimics due to activation and not apoptosis/necrosis
.
Acad Emerg Med
.
2007
;
14
(
8
):
685
90
.
14.
Niessen
A
,
Heyder
P
,
Krienke
S
,
Blank
N
,
Tykocinski
L-O
,
Lorenz
H-M
, et al
.
Apoptotic-cell-derived membrane microparticles and IFN-α induce an inflammatory immune response
.
J Cell Sci
.
2015
;
128
(
14
):
2443
53
.
15.
de Jong
OG
,
Verhaar
MC
,
Chen
Y
,
Vader
P
,
Gremmels
H
,
Posthuma
G
, et al
.
Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes
.
J Extracell Vesicles
.
2012
;
1
.
16.
Valadi
H
,
Ekström
K
,
Bossios
A
,
Sjöstrand
M
,
Lee
JJ
,
Lötvall
JO
.
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
.
Nat Cell Biol
.
2007
;
9
(
6
):
654
9
.
17.
Tian
T
,
Zhu
Y-L
,
Zhou
Y-Y
,
Liang
G-F
,
Wang
Y-Y
,
Hu
F-H
, et al
.
Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery
.
J Biol Chem
.
2014
;
289
(
32
):
22258
67
.
18.
Boulanger
CM
,
Scoazec
A
,
Ebrahimian
T
,
Henry
P
,
Mathieu
E
,
Tedgui
A
, et al
.
Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction
.
Circulation
.
2001
;
104
(
22
):
2649
52
.
19.
Jansen
F
,
Yang
X
,
Proebsting
S
,
Hoelscher
M
,
Przybilla
D
,
Baumann
K
, et al
.
MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease
.
J Am Heart Assoc
.
2014
;
3
(
6
):
e001249
.
20.
Stockelman
KA
,
Hijmans
JG
,
Bammert
TD
,
Greiner
JJ
,
Stauffer
BL
,
DeSouza
CA
.
Circulating endothelial cell derived microvesicles are elevated with hypertension and associated with endothelial dysfunction
.
Can J Physiol Pharmacol
.
2020
;
98
(
8
):
557
61
.
21.
Garcia
VP
,
Fandl
HK
,
Hijmans
JG
,
Berry
AR
,
Cardenas
HL
,
Stockelman
KA
, et al
.
Effects of circulating endothelial microvesicles isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide production
.
Am J Physiol Endocrinol Metab
.
2024
;
326
(
1
):
E38
49
.
22.
Brewster
LM
,
Garcia
VP
,
Levy
MV
,
Stockelman
KA
,
Goulding
A
,
DeSouza
NM
, et al
.
Endothelin-1-induced endothelial microvesicles impair endothelial cell function
.
J Appl Physiol
.
2020
;
128
(
6
):
1497
505
.
23.
Nielsen
MH
,
Beck-Nielsen
H
,
Andersen
MN
,
Handberg
A
.
A flow cytometric method for characterization of circulating cell-derived microparticles in plasma
.
J Extracell Vesicles
.
2014
;
3
(
1
).
24.
Jansen
F
,
Yang
X
,
Hoyer
FF
,
Paul
K
,
Heiermann
N
,
Becher
MU
, et al
.
Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis
.
Arterioscler Thromb Vasc Biol
.
2012
;
32
(
8
):
1925
35
.
25.
Lötvall
J
,
Hill
AF
,
Hochberg
F
,
Buzás
EI
,
Di Vizio
D
,
Gardiner
C
, et al
.
Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles
.
J Extracell Vesicles
.
2014
;
3
:
26913
.
26.
Jansen
F
,
Yang
X
,
Franklin
BS
,
Hoelscher
M
,
Schmitz
T
,
Bedorf
J
, et al
.
High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation
.
Cardiovasc Res
.
2013
;
98
(
1
):
94
106
.
27.
Suksawat
M
,
Techasen
A
,
Namwat
N
,
Boonsong
T
,
Titapun
A
,
Ungarreevittaya
P
, et al
.
Inhibition of endothelial nitric oxide synthase in cholangiocarcinoma cell lines: a new strategy for therapy
.
FEBS Open Bio
.
2018
;
8
(
4
):
513
22
.
28.
Brodsky
SV
,
Zhang
F
,
Nasjletti
A
,
Goligorsky
MS
.
Endothelium-derived microparticles impair endothelial function in vitro
.
Am J Physiol Heart Circ Physiol
.
2004
;
286
(
5
):
H1910
1915
.
29.
Burger
D
,
Turner
M
,
Munkonda
MN
,
Touyz
RM
.
Endothelial microparticle-derived reactive oxygen species: role in endothelial signaling and vascular function
.
Oxid Med Cell Longev
.
2016
;
2016
:
5047954
.
30.
Horn
P
,
Cortese-Krott
MM
,
Amabile
N
,
Hundsdörfer
C
,
Kröncke
K-D
,
Kelm
M
, et al
.
Circulating microparticles carry a functional endothelial nitric oxide synthase that is decreased in patients with endothelial dysfunction
.
J Am Heart Assoc
.
2012
;
2
(
1
):
e003764
.
31.
Beer
KB
,
Wehman
AM
.
Mechanisms and functions of extracellular vesicle release in vivo-What we can learn from flies and worms
.
Cell Adh Migr
.
2017
;
11
(
2
):
135
50
.
32.
Cyr
AR
,
Huckaby
LV
,
Shiva
SS
,
Zuckerbraun
BS
.
Nitric oxide and endothelial dysfunction
.
Crit Care Clin
.
2020
;
36
(
2
):
307
21
.
33.
Paudel
KR
,
Panth
N
,
Kim
D-W
.
Circulating endothelial microparticles: a key hallmark of atherosclerosis progression
.
Sci
.
2016
;
2016
:
8514056
.
34.
Cui
Y
,
Zheng
L
,
Jiang
M
,
Jia
R
,
Zhang
X
,
Quan
Q
, et al
.
Circulating microparticles in patients with coronary heart disease and its correlation with interleukin-6 and C-reactive protein
.
Mol Biol Rep
.
2013
;
40
(
11
):
6437
42
.
35.
Nozaki
T
,
Sugiyama
S
,
Sugamura
K
,
Ohba
K
,
Matsuzawa
Y
,
Konishi
M
, et al
.
Prognostic value of endothelial microparticles in patients with heart failure
.
Eur J Heart Fail
.
2010
;
12
(
11
):
1223
8
.
36.
Simak
J
,
Gelderman
MP
,
Yu
H
,
Wright
V
,
Baird
AE
.
Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome
.
J Thromb Haemost
.
2006
;
4
(
6
):
1296
302
.
37.
Vion
A-C
,
Ramkhelawon
B
,
Loyer
X
,
Chironi
G
,
Devue
C
,
Loirand
G
, et al
.
Shear stress regulates endothelial microparticle release
.
Circ Res
.
2013
;
112
(
10
):
1323
33
.
38.
Mai
J
,
Virtue
A
,
Shen
J
,
Wang
H
,
Yang
X-F
.
An evolving new paradigm: endothelial cells: conditional innate immune cells
.
J Hematol Oncol
.
2013
;
6
:
61
.
39.
Tak
PP
,
Firestein
GS
.
NF-kappaB: a key role in inflammatory diseases
.
J Clin Invest
.
2001
;
107
(
1
):
7
11
.
40.
Cohen
GM
.
Caspases: the executioners of apoptosis
.
Biochem J
.
1997
;
326 (Pt 1)
(
Pt 1
):
1
16
.
41.
Smith
DT
,
Hoetzer
GL
,
Greiner
JJ
,
Stauffer
BL
,
DeSouza
CA
.
Endothelial release of tissue-type plasminogen activator in the human forearm: role of nitric oxide
.
J Cardiovasc Pharmacol
.
2003
;
42
(
2
):
311
4
.
42.
van den Oever
IAM
,
Raterman
HG
,
Nurmohamed
MT
,
Simsek
S
.
Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus
.
Mediators Inflamm
.
2010
;
2010
:
792393
.
43.
Mudau
M
,
Genis
A
,
Lochner
A
,
Strijdom
H
.
Endothelial dysfunction: the early predictor of atherosclerosis
.
Cardiovasc J Afr
.
2012
;
23
(
4
):
222
31
.
44.
Curtis
AM
,
Edelberg
J
,
Jonas
R
,
Rogers
WT
,
Moore
JS
,
Syed
W
, et al
.
Endothelial microparticles: sophisticated vesicles modulating vascular function
.
Vasc Med
.
2013
;
18
(
4
):
204
14
.
45.
Santilli
F
,
Marchisio
M
,
Lanuti
P
,
Boccatonda
A
,
Miscia
S
,
Davì
G
.
Microparticles as new markers of cardiovascular risk in diabetes and beyond
.
Thromb Haemost
.
2016
;
116
(
2
):
220
34
.
46.
Boulanger
CM
,
Loyer
X
,
Rautou
P-E
,
Amabile
N
.
Extracellular vesicles in coronary artery disease
.
Nat Rev Cardiol
.
2017
;
14
(
5
):
259
72
.
47.
Amabile
N
,
Guérin
AP
,
Leroyer
A
,
Mallat
Z
,
Nguyen
C
,
Boddaert
J
, et al
.
Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure
.
J Am Soc Nephrol
.
2005
;
16
(
11
):
3381
8
.
48.
Balligand
J-L
,
Feron
O
,
Dessy
C
.
eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues
.
Physiol Rev
.
2009
;
89
(
2
):
481
534
.
You do not currently have access to this content.