Introduction: It is well documented that high-salt (HS) diet increases systemic and vascular oxidative stress in various animal models and in humans, leading to impairment of vascular reactivity. The present study examined the interaction of genotype and HS diet intake and the potential effects of oxidative stress – antioxidative system balance on the flow-induced dilation (FID) in pressurized carotid arteries of normotensive Tff3−/−/C57BL/6N knockout mice and their wild-type (WT) controls. Methods: Male, ten-week-old transgenic Tff3−/−/C57BL/6N (Tff3−/−) knockout mice and WT/C57BL/6N (WT) (parental strain) healthy mice were divided in LS (0.4% NaCl in rodent chow) and HS (4% NaCl in rodent chow fed for 1 week) groups. Additionally, LS and HS groups were treated with 1 mmol/L 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) dissolved in the drinking water. After anesthesia with ketamine chloride (100 mg/kg) and midazolam (5 mg/kg), blood pressure was measured, carotid arteries and aortas were isolated, and blood samples were collected. Results: FID was decreased in WT_HS mice and restored by superoxide scavenger TEMPOL in vivo. On the other hand, attenuated FID of Tff3−/− mice was not further affected by HS diet or TEMPOL in vivo treatment. Vascular superoxide/reactive oxygen species levels were increased with HS diet in both strains and restored by TEMPOL. HS upregulated glutathione peroxidase 1 (GPx1) gene expression in WT_HS and Tff3−/−_HS mice, while GPx activity was significantly decreased only in WT_HS group. Systemic (serum) markers of oxidative stress (oxLDL and AOPP) and arterial blood pressure were similar among groups. Conclusion: HS diet increases vascular oxidative stress and impairs vasodilation in WT mice. Tff3 gene deficiency attenuates vasodilation per se, without further effects of HS intake. This can be attributed to vascular upregulation of antioxidative enzyme GPx1 in Tff3−/−/C57BL/6N mice conferring protection from oxidative stress.

1.
Drenjancevic-Peric
I
,
Frisbee
JC
,
Lombard
JH
.
Skeletal muscle arteriolar reactivity in SS.BN13 consomic rats and dahl salt-sensitive rats
.
Hypertension
.
2003
;
41
(
5
):
1012
5
.
2.
Zhu
J
,
Drenjancevic-Peric
I
,
McEwen
S
,
Friesema
J
,
Schulta
D
,
Yu
M
, et al
.
Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta
.
Am J Physiol Heart Circ Physiol
.
2006
;
291
(
2
):
H929
38
.
3.
Cosic
A
,
Jukic
I
,
Stupin
A
,
Mihalj
M
,
Mihaljevic
Z
,
Novak
S
, et al
.
Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet
.
J Physiol
.
2016
;
594
(
17
):
4917
31
.
4.
Matic
A
,
Jukic
I
,
Stupin
A
,
Baric
L
,
Mihaljevic
Z
,
Unfirer
S
, et al
.
High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of sprague-dawley rats
.
Am J Physiol Heart Circ Physiol
.
2018
;
315
(
3
):
H718
30
.
5.
Cavka
A
,
Jukic
I
,
Ali
M
,
Goslawski
M
,
Bian
JT
,
Wang
E
, et al
.
Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure
.
J Hypertens
.
2016
;
34
(
4
):
676
84
.
6.
Cavka
A
,
Cosic
A
,
Jukic
I
,
Jelakovic
B
,
Lombard
JH
,
Phillips
SA
, et al
.
The role of cyclo-oxygenase-1 in high-salt diet-induced microvascular dysfunction in humans: high-salt diet and microvascular dysfunction
.
J Physiol
.
2015
;
593
(
24
):
5313
24
.
7.
Lenda
DM
,
Sauls
BA
,
Boegehold
MA
.
Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt
.
Am J Physiol Heart Circ Physiol
.
2000
;
279
(
1
):
H7
14
.
8.
Kozina
N
,
Mihaljević
Z
,
Lončar
MB
,
Mihalj
M
,
Mišir
M
,
Radmilović
M
, et al
.
Impact of high salt diet on cerebral vascular function and stroke in Tff3−/−/C57bl/6N knockout and WT (C57bl/6N) control mice
.
IJMS
.
2019
;
20
:
5188
.
9.
Gallardo
JM
,
De Carmen Prado-Uribe
M
,
Amato
D
,
Paniagua
R
.
Inflammation and oxidative stress markers by pentoxifylline treatment in rats with chronic renal failure and high sodium intake
.
Arch Med Res
.
2007
;
38
(
1
):
34
8
.
10.
Poznyak
AV
,
Nikiforov
NG
,
Markin
AM
,
Kashirskikh
DA
,
Myasoedova
VA
,
Gerasimova
EV
, et al
.
Overview of OxLDL and its impact on cardiovascular health: focus on atherosclerosis
.
Front Pharmacol
.
2020
;
11
:
613780
.
11.
Tan
XD
,
Liu
QP
,
Hsueh
W
,
Chen
YH
,
Chang
H
,
Gonzalez-Crussi
F
.
Intestinal trefoil factor binds to intestinal epithelial cells and induces nitric oxide production: priming and enhancing effects of mucin
.
Biochem J
.
1999
;
338
(
3
):
745
51
.
12.
Busch
M
,
Dünker
N
.
Trefoil factor family peptides: friends or foes
.
Biomol Concepts
.
2015
;
6
(
5–6
):
343
59
.
13.
Graness
A
,
Chwieralski
CE
,
Reinhold
D
,
Thim
L
,
Hoffmann
W
.
Protein kinase C and ERK activation are required for TFF-peptide-stimulated bronchial epithelial cell migration and tumor necrosis factor-alpha-induced interleukin-6 (IL-6) and IL-8 secretion
.
J Biol Chem
.
2002
;
277
(
21
):
18440
6
.
14.
Dhar
DK
,
Wang
TC
,
Tabara
H
,
Tonomoto
Y
,
Maruyama
R
,
Tachibana
M
, et al
.
Expression of trefoil factor family members correlates with patient prognosis and neoangiogenesis
.
Clin Cancer Res
.
2005
;
11
(
18
):
6472
8
.
15.
Im
S
,
Yoo
C
,
Jung
JH
,
Choi
HJ
,
Yoo
J
,
Kang
CS
.
Reduced expression of TFF1 and increased expression of TFF3 in gastric cancer: correlation with clinicopathological parameters and prognosis
.
Int J Med Sci
.
2013
;
10
(
2
):
133
40
.
16.
Qu
Y
,
Yang
Y
,
Ma
D
,
Xiao
W
.
Increased trefoil factor 3 levels in the serum of patients with three major histological subtypes of lung cancer
.
Oncol Rep
.
2012
;
27
(
4
):
1277
83
.
17.
Vestergaard
EM
,
Borre
M
,
Poulsen
SS
,
Nexø
E
,
Tørring
N
.
Plasma levels of trefoil factors are increased in patients with advanced prostate cancer
.
Clin Cancer Res
.
2006
;
12
(
3 Pt 1
):
807
12
.
18.
Okada
H
,
Kimura
MT
,
Tan
D
,
Fujiwara
K
,
Igarashi
J
,
Makuuchi
M
, et al
.
Frequent trefoil factor 3 (TFF3) overexpression and promoter hypomethylation in mouse and human hepatocellular carcinomas
.
Int J Oncol
.
2005
;
26
(
2
):
369
77
.
19.
May
FE
,
Westley
BR
.
TFF3 is a valuable predictive biomarker of endocrine response in metastatic breast cancer
.
Endocr Relat Cancer
.
2015
;
22
(
3
):
465
79
.
20.
Huang
Z
,
Zhang
X
,
Lu
H
,
Wu
L
,
Wang
D
,
Zhang
Q
, et al
.
Serum trefoil factor 3 is a promising non-invasive biomarker for gastric cancer screening: a monocentric cohort study in China
.
BMC Gastroenterol
.
2014
;
14
:
74
.
21.
Kozina
N
,
Jukić
I
.
Trefoil factor family (TFF)
.
Southeast Eur Med J
.
2019
;
3
.
22.
Šešelja
K
,
Bazina
I
,
Welss
J
,
Schicht
M
,
Paulsen
F
,
Bijelić
N
, et al
.
Effect of Tff3 deficiency and ER stress in the liver
.
IJMS
.
2019
;
20
(
18
):
4389
.
23.
Farah
VMA
,
Joaquim
LF
,
Bernatova
I
,
Morris
M
.
Acute and chronic stress influence blood pressure variability in mice
.
Physiol Behav
.
2004
;
83
(
1
):
135
42
.
24.
Mattson
DL
.
Comparison of arterial blood pressure in different strains of mice
.
Am J Hypertens
.
2001
;
14
(
5 Pt 1
):
405
8
.
25.
Zhao
X
,
Ho
D
,
Gao
S
,
Hong
C
,
Vatner
DE
,
Vatner
SF
.
Arterial pressure monitoring in mice
.
Curr Protoc Mouse Biol
.
2011
;
1
:
105
22
.
26.
Jukic
I
,
Mihaljevic
Z
,
Matic
A
,
Mihalj
M
,
Kozina
N
,
Selthofer-Relatic
K
, et al
.
Angiotensin II type 1 receptor is involved in flow-induced vasomotor responses of isolated middle cerebral arteries: role of oxidative stress
.
Am J Physiol Heart Circ Physiol
.
2021
;
320
(
4
):
H1609
24
.
27.
Mihaljević
Z
,
Matić
A
,
Stupin
A
,
Rašić
L
,
Jukić
I
,
Drenjančević
I
.
Acute hyperbaric oxygenation, contrary to intermittent hyperbaric oxygenation, adversely affects vasorelaxation in healthy sprague-dawley rats due to increased oxidative stress
.
Oxid Med Cel Longev
.
2018
;
2018
:
7406027
15
.
28.
Zhu
J
,
Mori
T
,
Huang
T
,
Lombard
JH
.
Effect of high-salt diet on NO release and superoxide production in rat aorta
.
Am J Physiol Heart Circ Physiol
.
2004
;
286
(
2
):
H575
83
.
29.
Collins
TJ
.
ImageJ for microscopy
.
Biotechniques
.
2007
;
43
(
1 Suppl
):
25
30
.
30.
Vijayalakshmi
A
,
Girish
V
.
Affordable image analysis using NIH image/ImageJ
.
Indian J Cancer
.
2004
;
41
(
1
):
47
.
31.
Wendel
A
.
Glutathione peroxidase
.
Methods Enzymol
.
1981
;
77
:
325
33
.
32.
Livak
KJ
,
Schmittgen
TD
.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
.
Methods
.
2001
;
25
(
4
):
402
8
.
33.
Mihaljević
Z
,
Matić
A
,
Stupin
A
,
Frkanec
R
,
Tavčar
B
,
Kelava
V
, et al
.
Arachidonic acid metabolites of CYP450 enzymes and HIF-1α modulate endothelium-dependent vasorelaxation in sprague-dawley rats under acute and intermittent hyperbaric oxygenation
.
IJMS
.
2020
;
21
(
17
):
6353
.
34.
Liu
SQ
,
Roberts
D
,
Zhang
B
,
Ren
Y
,
Zhang
L-Q
,
Wu
YH
.
Trefoil factor 3 as an endocrine neuroprotective factor from the liver in experimental cerebral ischemia/reperfusion injury
.
PLoS One
.
2013
;
8
(
10
):
e77732
.
35.
Xue
Y
,
Shen
L
,
Cui
Y
,
Zhang
H
,
Chen
Q
,
Cui
A
, et al
.
Tff3, as a novel peptide, regulates hepatic glucose metabolism
.
PLoS One
.
2013
;
8
(
9
):
e75240
.
36.
Oelze
M
,
Kröller-Schön
S
,
Steven
S
,
Lubos
E
,
Doppler
C
,
Hausding
M
, et al
.
Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging
.
Hypertension
.
2014
;
63
(
2
):
390
6
.
37.
Fridovich
I
.
Superoxide anion radical (O2-.), superoxide dismutases, and related matters
.
J Biol Chem
.
1997
;
272
(
30
):
18515
7
.
38.
Moellering
DR
,
Levonen
A-L
,
Go
Y-M
,
Patel
RP
,
Dickinson
DA
,
Forman
HJ
, et al
.
Induction of glutathione synthesis by oxidized low-density Lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress
.
Biochem J
.
2002
;
362
(
Pt 1
):
51
9
.
39.
Wang
Z
,
Guo
X
,
Zhang
Q
,
Du
G
,
Zeng
Z
,
Zheng
C
, et al
.
Elimination of ox-LDL through the liver inhibits advanced atherosclerotic plaque progression
.
Int J Med Sci
.
2021
;
18
(
16
):
3652
64
.
40.
McEwen
ST
,
Schmidt
JR
,
Somberg
L
,
Cruz
L
,
Lombard
JH
.
Time-course and mechanisms of restored vascular relaxation by reduced salt intake and angiotensin II infusion in rats fed a high-salt diet
.
Microcirculation
.
2009
;
16
(
3
):
220
34
.
41.
Balan
Y
,
Packirisamy
RM
,
Mohanraj
PS
.
High dietary salt intake activates inflammatory cascades via Th17 immune cells: impact on Health and diseases
.
Arch Med Sci
.
2020
;
8
(
2
):
459
65
.
42.
Krüger
K
,
Schmid
S
,
Paulsen
F
,
Ignatius
A
,
Klinger
P
,
Hotfiel
T
, et al
.
Trefoil factor 3 (TFF3) is involved in cell migration for skeletal repair
.
IJMS
.
2019
;
20
(
17
):
4277
.
43.
Kolobarić
N
,
Mihalj
M
,
Kozina
N
,
Matić
A
,
Mihaljević
Z
,
Jukić
I
, et al
.
Tff3−/− knock-out mice with altered lipid metabolism exhibit a lower level of inflammation following the dietary intake of sodium chloride for one week
.
IJMS
.
2023
;
24
(
8
):
7315
.
44.
Vollmer
WM
,
Sacks
FM
,
Ard
J
,
Appel
LJ
,
Bray
GA
,
Simons-Morton
DG
, et al
.
Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial
.
Ann Intern Med
.
2001
;
135
(
12
):
1019
28
.
45.
Tzemos
N
,
Lim
PO
,
Wong
S
,
Struthers
AD
,
MacDonald
TM
.
Adverse cardiovascular effects of acute salt loading in young normotensive individuals
.
Hypertension
.
2008
;
51
(
6
):
1525
30
.
46.
Cavka
A
,
Cosic
A
,
Grizelj
I
,
Koller
A
,
Jelakovic
B
,
Lombard
JH
, et al
.
Effects of AT1 receptor blockade on plasma thromboxane A 2 (TXA 2 ) level and skin microcirculation in young healthy women on low salt diet
.
Kidney Blood Press Res
.
2013
;
37
(
4–5
):
432
42
.
You do not currently have access to this content.