Introduction: Acquisition of a deeper understanding of microvascular function across physiological and pathological conditions can be complicated by poor accessibility of the vascular networks and the necessary sophistication or intrusiveness of the equipment needed to acquire meaningful data. Laser Doppler fluximetry (LDF) provides a mechanism wherein investigators can readily acquire large amounts of data with minor inconvenience for the subject. However, beyond fairly basic analyses of erythrocyte perfusion (fluximetry) data within the cutaneous microcirculation (i.e., perfusion at rest and following imposed challenges), a deeper understanding of microvascular perfusion requires a more sophisticated approach that can be challenging for many investigators. Methods: This manuscript provides investigators with clear guidance for data acquisition from human subjects for full analysis of fluximetry data, including levels of perfusion, single- and multiscale Lempel-Ziv complexity (LZC) and sample entropy (SampEn), and wavelet-based analyses for the major physiological components of the signal. Representative data and responses are presented from a recruited cohort of healthy volunteers, and computer codes for full data analysis (MATLAB) are provided to facilitate efforts by interested investigators. Conclusion: It is anticipated that these materials can reduce the challenge to investigators integrating these approaches into their research programs and facilitate translational research in cardiovascular science.

1.
Guven
G
,
Hilty
MP
,
Ince
C
.
Microcirculation: physiology, pathophysiology, and clinical application
.
Blood Purif
.
2020
;
49
(
1–2
):
143
50
.
2.
Pittman
RN
.
Oxygen transport in the microcirculation and its regulation
.
Microcirculation
.
2013
;
20
(
2
):
117
37
.
3.
Barcroft
H
,
Edholm
OG
.
The effect of temperature on blood flow and deep temperature in the human forearm
.
J Physiol
.
1943
;
102
(
1
):
5
20
.
4.
Argarini
R
,
Smith
KJ
,
Carter
HH
,
Naylor
LH
,
McLaughlin
RA
,
Green
DJ
.
Visualizing and quantifying the impact of reactive hyperemia on cutaneous microvessels in humans
.
J Appl Physiol
.
2020
;
128
(
1
):
17
24
.
5.
Hellmann
M
,
Roustit
M
,
Cracowski
JL
.
Skin microvascular endothelial function as a biomarker in cardiovascular diseases
.
Pharmacol Rep
.
2015
;
67
(
4
):
803
10
.
6.
Low
DA
,
Jones
H
,
Cable
NT
,
Alexander
LM
,
Kenney
WL
.
Historical reviews of the assessment of human cardiovascular function: interrogation and understanding of the control of skin blood flow
.
Eur J Appl Physiol
.
2020
;
120
(
1
):
1
16
.
7.
Tsao
CW
,
Aday
AW
,
Almarzooq
ZI
,
Anderson
CAM
,
Arora
P
,
Avery
CL
, et al
. Heart disease and stroke statistics - 2023 update: a report from the American heart association. Circulation2023.
8.
Roustit
M
,
Cracowski
JL
.
Non-invasive assessment of skin microvascular function in humans: an insight into methods
.
Microcirculation
.
2012
;
19
(
1
):
47
64
.
9.
Schonberger
ZG
,
Huang
SJY
,
Thakkar
RN
,
Mamone
AA
,
Khan
DI
,
Chow
NLY
, et al
.
Assessments of perfusion, blood flow, and vascular structure in ambulatory subjects: guidance for translational research scientists
.
J Vasc Res
.
2023
;
60
(
1
):
12
68
.
10.
Yvonne-Tee
GB
,
Rasool
AH
,
Halim
AS
,
Rahman
AR
.
Reproducibility of different laser Doppler fluximetry parameters of postocclusive reactive hyperemia in human forearm skin
.
J Pharmacol Toxicol Methods
.
2005
;
52
(
2
):
286
92
.
11.
Houben
A
,
Martens
RJH
,
Stehouwer
CDA
.
Assessing microvascular function in humans from a chronic disease perspective
.
J Am Soc Nephrol
.
2017
;
28
(
12
):
3461
72
.
12.
Kaunitz
JD
.
The Doppler effect: a century from red shift to red spot
.
Dig Dis Sci
.
2016
;
61
(
2
):
340
1
.
13.
Cracowski
JL
,
Minson
CT
,
Salvat-Melis
M
,
Halliwill
JR
.
Methodological issues in the assessment of skin microvascular endothelial function in humans
.
Trends Pharmacol Sci
.
2006
;
27
(
9
):
503
8
.
14.
de Koning
EJ
,
Rabelink
TJ
.
Endothelial function in the post-prandial state
.
Atheroscler Suppl
.
2002
;
3
(
1
):
11
6
.
15.
Jalali
Z
,
Khademalhosseini
M
,
Soltani
N
,
Esmaeili Nadimi
A
.
Smoking, alcohol and opioids effect on coronary microcirculation: an update overview
.
Bmc Cardiovasc Disor
.
2021
;
21
(
1
):
185
.
16.
Reus
WF
,
Robson
MC
,
Zachary
L
,
Heggers
JP
.
Acute effects of tobacco smoking on blood flow in the cutaneous micro-circulation
.
Br J Plast Surg
.
1984
;
37
(
2
):
213
5
.
17.
Feng
X
,
Xu
S
,
Weng
J
.
Marijuana and endothelial dysfunction: new mechanism and therapy
.
Trends Mol Med
.
2022
;
28
(
8
):
613
5
.
18.
Noguchi
K
,
Matsuzaki
T
,
Sakanashi
M
,
Hamadate
N
,
Uchida
T
,
Kina-Tanada
M
, et al
.
Effect of caffeine contained in a cup of coffee on microvascular function in healthy subjects
.
J Pharmacol Sci
.
2015
;
127
(
2
):
217
22
.
19.
Thomas
SD
,
Carter
HH
,
Jones
H
,
Roberts
KA
,
Thijssen
D
,
Low
DA
.
Acute impact of aerobic exercise on local cutaneous thermal hyperaemia
.
Microvasc Res
.
2023
;
146
:
104457
.
20.
Hayashi
K
,
Ito
N
,
Ichikawa
Y
,
Suzuki
Y
.
Effect of postprandial thermogenesis on the cutaneous vasodilatory response during exercise
.
Appl Physiol Nutr Metab
.
2014
;
39
(
8
):
920
6
.
21.
Iorga
A
,
Cunningham
CM
,
Moazeni
S
,
Ruffenach
G
,
Umar
S
,
Eghbali
M
.
The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy
.
Biol Sex Differ
.
2017
;
8
(
1
):
33
.
22.
Stefanovska
A
,
Bracic
M
,
Kvernmo
HD
.
Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique
.
IEEE Trans Biomed Eng
.
1999
;
46
(
10
):
1230
9
.
23.
Ticcinelli
V
,
Stankovski
T
,
Iatsenko
D
,
Bernjak
A
,
Bradbury
AE
,
Gallagher
AR
, et al
.
Coherence and coupling functions reveal microvascular impairment in treated hypertension
.
Front Physiol
.
2017
;
8
:
749
.
24.
Aboy
M
,
Hornero
R
,
Abasolo
D
,
Alvarez
D
.
Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis
.
IEEE Trans Biomed Eng
.
2006
;
53
(
11
):
2282
8
.
25.
Zhang
Y
,
Wei
S
,
Liu
H
,
Zhao
L
,
Liu
C
.
A novel encoding Lempel-Ziv complexity algorithm for quantifying the irregularity of physiological time series
.
Comput Methods Programs Biomed
.
2016
;
133
:
7
15
.
26.
Yang
AC
,
Hseu
SS
,
Yien
HW
,
Goldberger
AL
,
Peng
CK
.
Linguistic analysis of the human heartbeat using frequency and rank order statistics
.
Phys Rev Lett
.
2003
;
90
(
10
):
108103
.
27.
Hsiu
H
,
Hu
HF
,
Chang
YW
.
Using complexity and spectral analyses of noninvasive LDF signals in patients with metabolic syndrome
.
Complexity
.
2018
;
2018
:
1
6
.
28.
Chipperfield
AJ
,
Thanaj
M
,
Clough
GF
.
Multiscale, multidomain analysis of microvascular flow dynamics
.
Exp Physiol
.
2020
;
105
(
9
):
1452
8
.
29.
Lempel
A
,
Ziv
J
.
On the complexity of finite sequences
.
IEEE Trans Inf Theor
.
1976
;
22
(
1
):
75
81
.
30.
Thanaj
M
,
Chipperfield
AJ
,
Clough
GF
.
Analysis of microvascular blood flow and oxygenation: discrimination between two haemodynamic steady states using nonlinear measures and multiscale analysis
.
Comput Biol Med
.
2018
;
102
:
157
67
.
31.
Silva
IVG
,
de Figueiredo
RC
,
Rios
DRA
.
Effect of different classes of antihypertensive drugs on endothelial function and inflammation
.
Int J Mol Sci
.
2019
;
20
(
14
):
3458
.
32.
Richman
JS
,
Moorman
JR
.
Physiological time-series analysis using approximate entropy and sample entropy
.
Am J Physiol Heart Circ Physiol
.
2000
;
278
(
6
):
H2039
49
.
33.
Costa
M
,
Goldberger
AL
,
Peng
CK
.
Multiscale entropy analysis of complex physiologic time series
.
Phys Rev Lett
.
2002
;
89
(
6
):
068102
.
34.
Kvernmo
HD
,
Stefanovska
A
,
Bracic
M
,
Kirkebøen
KA
,
Kvernebo
K
.
Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise
.
Microvasc Res
.
1998
;
56
(
3
):
173
82
.
35.
Bracic
M
,
Stefanovska
A
.
Wavelet-based analysis of human blood-flow dynamics
.
Bull Math Biol
.
1998
;
60
(
5
):
919
35
.
36.
Kralj
L
,
Lenasi
H
.
Wavelet analysis of laser Doppler microcirculatory signals: current applications and limitations
.
Front Physiol
.
2022
;
13
:
1076445
.
37.
Mallette
MM
,
Hodges
GJ
,
McGarr
GW
,
Gabriel
DA
,
Cheung
SS
.
Spectral analysis of reflex cutaneous vasodilatation during passive heat stress
.
Microvasc Res
.
2017
;
111
:
42
8
.
38.
Carroll
RG
.
Integrated cardiovascular function
.
Elsevier’s Integrated Physiology
;
2007
. p.
91
8
.
39.
Meredith
DJ
,
Clifton
D
,
Charlton
P
,
Brooks
J
,
Pugh
CW
,
Tarassenko
L
.
Photoplethysmographic derivation of respiratory rate: a review of relevant physiology
.
J Med Eng Technol
.
2012
;
36
(
1
):
1
7
.
40.
Kastrup
J
,
Bulow
J
,
Lassen
NA
.
Vasomotion in human skin before and after local heating recorded with laser Doppler flowmetry. A method for induction of vasomotion
.
Int J Microcirc Clin Exp
.
1989
;
8
(
2
):
205
15
.
41.
Schubert
R
,
Brayden
JE
.
Stretch-activated cation channels and the myogenic response of small arteries
. In:
Mechanosensitivity in cells and tissues
;
2005
.
42.
Charkoudian
N
,
Rabbitts
JA
.
Sympathetic neural mechanisms in human cardiovascular health and disease
.
Mayo Clin Proc
.
2009
;
84
(
9
):
822
30
.
43.
Landsverk
SA
,
Kvandal
P
,
Bernjak
A
,
Stefanovska
A
,
Kirkeboen
KA
.
The effects of general anesthesia on human skin microcirculation evaluated by wavelet transform
.
Anesth Analg
.
2007
;
105
(
4
):
1012
9
. table of contents.
44.
Hafner
HM
,
Brauer
K
,
Eichner
M
,
Koch
I
,
Heinle
H
,
Rocken
M
, et al
.
Wavelet analysis of skin perfusion in healthy volunteers
.
Microcirculation
.
2007
;
14
(
2
):
137
44
.
45.
Bernjak
A
,
Clarkson
PB
,
McClintock
PV
,
Stefanovska
A
.
Low-frequency blood flow oscillations in congestive heart failure and after beta1-blockade treatment
.
Microvasc Res
.
2008
;
76
(
3
):
224
32
.
46.
Reynes
C
,
Vinet
A
,
Maltinti
O
,
Knapp
Y
.
Minimizing the duration of laser Doppler flowmetry recordings while maintaining wavelet analysis quality: a methodological study
.
Microvasc Res
.
2020
;
131
:
104034
.
47.
Iatsenko
D
,
Lancaster
G
,
McCormack
S
,
Newman
J
,
Policharla
GV
,
Ticcinelli
V
, et al
.
MODA v1.01. v1.01 ed: zenodo
;
2019
.
48.
Chipperfield
AJ
,
Thanaj
M
,
Scorletti
E
,
Byrne
CD
,
Clough
GF
.
Multi-domain analysis of microvascular flow motion dynamics in NAFLD
.
Microcirculation
.
2019
;
26
(
5
):
e12538
.
49.
Hansen
C
,
Wei
Q
,
Shieh
JS
,
Fourcade
P
,
Isableu
B
,
Majed
L
.
Sample entropy, univariate, and multivariate multi-scale entropy in comparison with classical postural sway parameters in young healthy adults
.
Front Hum Neurosci
.
2017
;
11
:
206
.
50.
Delgado-Bonal
A
,
Marshak
A
.
Approximate entropy and sample entropy: a comprehensive tutorial
.
Entropy
.
2019
;
21
(
6
):
541
.
51.
Figueiras
E
,
Roustit
M
,
Semedo
S
,
Ferreira
LF
,
Crascowski
JL
,
Humeau
A
.
Sample entropy of laser Doppler flowmetry signals increases in patients with systemic sclerosis
.
Microvasc Res
.
2011
;
82
(
2
):
152
5
.
52.
Ibanez-Molina
AJ
,
Iglesias-Parro
S
,
Soriano
MF
,
Aznarte
JI
.
Multiscale Lempel-Ziv complexity for EEG measures
.
Clin Neurophysiol
.
2015
;
126
(
3
):
541
8
.
53.
Humeau
A
,
Buard
B
,
Mahe
G
,
Rousseau
D
,
Chapeau-Blondeau
F
,
Abraham
P
.
Multiscale entropy of laser Doppler flowmetry signals in healthy human subjects
.
Med Phys
.
2010
;
37
(
12
):
6142
6
.
54.
Sheppard
LW
,
Reid
PC
,
Reuman
DC
.
Rapid surrogate testing of wavelet coherences
.
EPJ Nonlinear Biomed Phys
.
2017
;
5
:
1
.
55.
Lancaster
G
,
Debevec
T
,
Millet
GP
,
Poussel
M
,
Willis
SJ
,
Mramor
M
, et al
.
Relationship between cardiorespiratory phase coherence during hypoxia and genetic polymorphism in humans
.
J Physiol
.
2020
;
598
(
10
):
2001
19
.
56.
Sorelli
M
,
Perrella
A
,
Francia
P
,
Bocchi
L
.
Wavelet phase coherence analysis between the respiratory activity and the microcirculation: the effects of type 1 diabetes
.
IFMBE Proc
.
2020
;
73
:
61
5
.
You do not currently have access to this content.