Introduction: Previous studies have confirmed that low shear stress (LSS) induces glycocalyx disruption, leading to endothelial dysfunction. However, the role of autophagy in LSS-induced glycocalyx disruption and relevant mechanism are not clear. In this study, we hypothesized that LSS may promote autophagy, disrupting the endothelium glycocalyx. Methods: Human umbilical vein endothelial cells were subjected to physiological shear stress and LSS treatments, followed by the application of autophagy inducers and inhibitors. Additionally, cells were treated with specific matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibitor. The expression of autophagic markers, glycocalyx, MMP-2, and MMP-9 was measured. Results: LSS impacted the expression of endothelium autophagy markers, increasing the expression of LC3II.LC3I−1 and Beclin−1, and decreasing the levels of p62, accompanied by glycocalyx disturbance. Moreover, LSS upregulated the expression of MMP-2 and MMP-9 and downregulated the levels of syndecan-1 and heparan sulfate (HS). Additionally, expression of MMP-2 and MMP-9 was increased by an autophagy promoter but was decreased by autophagy inhibitor treatment under LSS. Autophagy and MMP-2 and MMP-9 further caused glycocalyx disruption. Conclusion: LSS promotes autophagy, leading to glycocalyx disruption. Autophagy increases the expression of MMP-2 and MMP-9, which are correlated with the glycocalyx destruction induced by LSS.

1.
Critcher
M
,
O’Leary
T
,
Huang
ML
.
Glycoengineering: scratching the surface
.
Biochem J
.
2021
;
478
(
4
):
703
19
. .
2.
Reitsma
S
,
Slaaf
DW
,
Vink
H
,
van Zandvoort
MA
,
oude Egbrink
MG
.
The endothelial glycocalyx: composition, functions, and visualization
.
Pflugers Arch
.
2007
;
454
(
3
):
345
59
. .
3.
Broekhuizen
LN
,
Mooij
HL
,
Kastelein
JJ
,
Stroes
ES
,
Vink
H
,
Nieuwdorp
M
.
Endothelial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease
.
Curr Opin Lipidol
.
2009
;
20
(
1
):
57
62
. .
4.
Chappell
D
,
Jacob
M
,
Paul
O
,
Rehm
M
,
Welsch
U
,
Stoeckelhuber
M
, et al
.
The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture
.
Circ Res
.
2009
;
104
(
11
):
1313
7
. .
5.
Ebong
EE
,
Lopez-Quintero
SV
,
Rizzo
V
,
Spray
DC
,
Tarbell
JM
.
Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integrative biology: quantitative biosciences from nano to macro
.
Integr Biol
.
2014
;
6
(
3
):
338
47
. .
6.
Florian
JA
,
Kosky
JR
,
Ainslie
K
,
Pang
Z
,
Dull
RO
,
Tarbell
JM
.
Heparan sulfate proteoglycan is a mechanosensor on endothelial cells
.
Circ Res
.
2003
;
93
(
10
):
e136
42
. .
7.
Yao
Y
,
Rabodzey
A
,
Dewey
CF
Jr
.
Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress
.
Am J Physiol Heart Circ Physiol
.
2007
;
293
(
2
):
H1023
30
. .
8.
Kaushal
S
,
Wehman
B
.
Cardiopulmonary bypass and the endothelial glycocalyx: shedding new light
.
J Thorac Cardiovasc Surg
.
2015
;
150
(
6
):
1482
3
. .
9.
Uchimido
R
,
Schmidt
EP
,
Shapiro
NI
.
The glycocalyx: a novel diagnostic and therapeutic target in sepsis
.
Crit Care
.
2019
;
23
(
1
):
16
. .
10.
He
G
,
Gao
Y
,
Feng
L
,
He
G
,
Wu
Q
,
Gao
W
, et al
.
Correlation between wall shear stress and acute degradation of the endothelial glycocalyx during cardiopulmonary bypass
.
J Cardiovasc Transl Res
.
2020
;
13
(
6
):
1024
32
. .
11.
Wu
Q
,
Gao
W
,
Zhou
J
,
He
G
,
Ye
J
,
Fang
F
, et al
.
Correlation between acute degradation of the endothelial glycocalyx and microcirculation dysfunction during cardiopulmonary bypass in cardiac surgery
.
Microvasc Res
.
2019
;
124
:
37
42
. .
12.
Fang
FQ
,
Sun
JH
,
Wu
QL
,
Feng
LY
,
Fan
YX
,
Ye
JX
, et al
.
Protective effect of sevoflurane on vascular endothelial glycocalyx in patients undergoing heart valve surgery: a randomised controlled trial
.
Eur J Anaesthesiol
.
2021
;
38
(
5
):
477
86
. .
13.
Manon-Jensen
T
,
Multhaupt
HA
,
Couchman
JR
.
Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains
.
FEBS J
.
2013
;
280
(
10
):
2320
31
. .
14.
Ramnath
R
,
Foster
RR
,
Qiu
Y
,
Cope
G
,
Butler
MJ
,
Salmon
AH
, et al
.
Matrix metalloproteinase 9-mediated shedding of syndecan 4 in response to tumor necrosis factor α: a contributor to endothelial cell glycocalyx dysfunction
.
FASEB J
.
2014
;
28
(
11
):
4686
99
. .
15.
Cui
N
,
Wang
H
,
Long
Y
,
Su
L
,
Liu
D
.
Dexamethasone suppressed LPS-induced matrix metalloproteinase and its effect on endothelial glycocalyx shedding
.
Mediators Inflamm
.
2015
;
2015
:
912726
. .
16.
Tronc
F
,
Mallat
Z
,
Lehoux
S
,
Wassef
M
,
Esposito
B
,
Tedgui
A
.
Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with NO
.
Arterioscler Thromb Vasc Biol
.
2000
;
20
(
12
):
E120
6
. .
17.
Sho
E
,
Sho
M
,
Singh
TM
,
Nanjo
H
,
Komatsu
M
,
Xu
C
, et al
.
Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix
.
Exp Mol Pathol
.
2002
;
73
(
2
):
142
53
. .
18.
Joffs
C
,
Gunasinghe
HR
,
Multani
MM
,
Dorman
BH
,
Kratz
JM
,
Crumbley
AJ
3rd
, et al
.
Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases
.
Ann Thorac Surg
.
2001
;
71
(
5
):
1518
23
. .
19.
Lalu
MM
,
Pasini
E
,
Schulze
CJ
,
Ferrari-Vivaldi
M
,
Ferrari-Vivaldi
G
,
Bachetti
T
, et al
.
Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart
.
Eur Heart J
.
2005
;
26
(
1
):
27
35
. .
20.
Gurusamy
N
,
Das
DK
.
Is autophagy a double-edged sword for the heart
.
Acta Physiol Hung
.
2009
;
96
(
3
):
267
76
. .
21.
Pestana
CR
,
Oishi
JC
,
Salistre-Araújo
HS
,
Rodrigues
GJ
.
Inhibition of autophagy by chloroquine stimulates nitric oxide production and protects endothelial function during serum deprivation
.
Cell Physiol Biochem
.
2015
;
37
(
3
):
1168
77
. .
22.
Huang
HQ
,
Li
N
,
Li
DY
,
Jing
D
,
Liu
ZY
,
Xu
XC
, et al
.
Autophagy promotes cigarette smoke-initiated and elastin-driven bronchitis-like airway inflammation in mice
.
Front Immunol
.
2021
;
12
:
594330
. .
23.
Dong
G
,
Yang
S
,
Cao
X
,
Yu
N
,
Yu
J
,
Qu
X
.
Low shear stress-induced autophagy alleviates cell apoptosis in HUVECs
.
Mol Med Rep
.
2017
;
15
(
5
):
3076
82
. .
24.
Kong
X
,
Chen
L
,
Ye
P
,
Wang
Z
,
Zhang
J
,
Ye
F
, et al
.
The role of HYAL2 in LSS-induced glycocalyx impairment and the PKA-mediated decrease in eNOS-Ser-633 phosphorylation and nitric oxide production
.
Mol Biol Cell
.
2016
;
27
(
25
):
3972
9
. .
25.
Martano
M
,
Altamura
G
,
Power
K
,
Liguori
P
,
Restucci
B
,
Borzacchiello
G
, et al
.
Beclin 1, LC3 and P62 expression in equine sarcoids. Animals: an open access journal from MDPI
.
Animals
.
2021
;
12
(
1
):
20
. .
26.
Yang
F
,
Du
L
,
Song
G
,
Zong
X
,
Jin
X
,
Yang
X
, et al
.
Rapamycin and 3-methyladenine influence the apoptosis, senescence, and adipogenesis of human adipose-derived stem cells by promoting and inhibiting autophagy: an in vitro and in vivo study
.
Aesthet Plast Surg
.
2021
;
45
(
3
):
1294
309
. .
27.
Harding
IC
,
Mitra
R
,
Mensah
SA
,
Herman
IM
,
Ebong
EE
.
Pro-atherosclerotic disturbed flow disrupts caveolin-1 expression, localization, and function via glycocalyx degradation
.
J Transl Med
.
2018
;
16
(
1
):
364
. .
28.
Lupu
F
,
Kinasewitz
G
,
Dormer
K
.
The role of endothelial shear stress on haemodynamics, inflammation, coagulation and glycocalyx during sepsis
.
J Cel Mol Med
.
2020
;
24
(
21
):
12258
71
. .
29.
Koo
A
,
Dewey
CF
Jr
,
García-Cardeña
G
.
Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells
.
Am J Physiol Cel Physiol
.
2013
;
304
(
2
):
C137
46
. .
30.
Yang
Q
,
Li
X
,
Li
R
,
Peng
J
,
Wang
Z
,
Jiang
Z
, et al
.
Low shear stress inhibited endothelial cell autophagy through TET2 downregulation
.
Ann Biomed Eng
.
2016
;
44
(
7
):
2218
27
. .
31.
Vion
AC
,
Kheloufi
M
,
Hammoutene
A
,
Poisson
J
,
Lasselin
J
,
Devue
C
, et al
.
Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow
.
Proc Natl Acad Sci USA
.
2017
;
114
(
41
):
E8675
84
. .
32.
Liu
W
,
Song
H
,
Xu
J
,
Guo
Y
,
Zhang
C
,
Yao
Y
, et al
.
Low shear stress inhibits endothelial mitophagy via caveolin-1/miR-7-5p/SQSTM1 signaling pathway
.
Atherosclerosis
.
2022
;
356
:
9
17
. .
33.
Zhang
JX
,
Qu
XL
,
Chu
P
,
Xie
DJ
,
Zhu
LL
,
Chao
YL
, et al
.
Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation
.
Biochim Biophys Acta Mol Cel Res
.
2018
;
1865
(
5
):
709
20
. .
34.
Ding
Z
,
Liu
S
,
Deng
X
,
Fan
Y
,
Wang
X
,
Mehta
JL
.
Hemodynamic shear stress modulates endothelial cell autophagy: role of LOX-1
.
Int J Cardiol
.
2015
;
184
:
86
95
. .
35.
Sun
HW
,
Li
CJ
,
Chen
HQ
,
Lin
HL
,
Lv
HX
,
Zhang
Y
, et al
.
Involvement of integrins, MAPK, and NF-kappaB in regulation of the shear stress-induced MMP-9 expression in endothelial cells
.
Biochem Biophys Res Commun
.
2007
;
353
(
1
):
152
8
. .
36.
Kang
H
,
Duran
CL
,
Abbey
CA
,
Kaunas
RR
,
Bayless
KJ
.
Fluid shear stress promotes proprotein convertase-dependent activation of MT1-MMP
.
Biochem Biophys Res Commun
.
2015
;
460
(
3
):
596
602
. .
37.
Ye
Y
,
Kuang
X
,
Xie
Z
,
Liang
L
,
Zhang
Z
,
Zhang
Y
, et al
.
Small-molecule MMP2/MMP9 inhibitor SB-3CT modulates tumor immune surveillance by regulating PD-L1
.
Genome Med
.
2020
;
12
(
1
):
83
. .
You do not currently have access to this content.