Introduction: While multiple factors influence coronary artery bypass graft (CABG) success rates, preserving saphenous vein endothelium during surgery may improve patency. Standard preparations include saphenous vein preparation in heparinized saline (saline) which can result in endothelial loss and damage. Here, we investigated the impact of preparing saphenous graft vessels in heparinized patient blood (blood) versus saline. Methods: Saphenous vein tissues from a total of 23 patients undergoing CABG were split into 2 groups (1) saline and (2) heparinized patient blood. Excess tissue was fixed for analysis immediately following surgery. Level of endothelial coverage, oxidative stress marker 4-hydroxynonenal (4HNE), and oxidative stress protective marker nuclear factor erythroid 2-related factor 2 (NRF2) were evaluated. Results: In saline patient veins, histological analysis revealed a limited luminal layer, suggesting a loss of endothelial cells (ECs). Immunofluorescent staining of EC markers vascular endothelial cadherin (VE-cadherin) and endothelial nitric oxide identified a significant improvement in EC coverage in the blood versus saline groups. Although both treatment groups expressed 4HNE to similar levels, EC blood samples expressed higher levels of NRF2. Conclusion: Our data indicate that use of heparinized patient blood helps preserve the endothelium and promotes vein graft health. This has the potential to improve long-term outcomes in patients.

During coronary artery bypass grafting, preparation of saphenous veins with heparinized saline damages the endothelium and increases oxidative stress. Saphenous vein grafts are prone to failure through blockages caused by neointimal hyperplasia or thrombosis. Endothelial damage and loss are thought to be major contributing factors to graft failure. Here, we find that preparation and preservation of saphenous vein grafts with patients’ own heparinized blood is sufficient to ensure endothelial preservation and protect vessels from oxidative stress compared with heparinized saline. These changes may increase long-term graft patency rates.

1.
Giustino
G
,
Colombo
A
,
Camaj
A
,
Yasumura
K
,
Mehran
R
,
Stone
GW
et al
.
Coronary in-stent restenosis: JACC state-of-the-art Review
.
J Am Coll Cardiol
.
2022
;
80
(
4
):
348
72
.
2.
Spertus
JA
,
Nerella
R
,
Kettlekamp
R
,
House
J
,
Marso
S
,
Borkon
AM
et al
.
Risk of restenosis and health status outcomes for patients undergoing percutaneous coronary intervention versus coronary artery bypass graft surgery
.
Circulation
.
2005
;
111
(
6
):
768
73
.
3.
Gharibeh
L
,
Ferrari
G
,
Ouimet
M
,
Grau
JB
.
Conduits’ biology regulates the outcomes of coronary artery bypass grafting
.
JACC Basic Transl Sci
.
2021
;
6
(
4
):
388
96
.
4.
Magee
MJ
,
Alexander
JH
,
Hafley
G
,
Ferguson
TB
,
Gibson
CM
,
Harrington
RA
et al
.
Coronary artery bypass graft failure after on-pump and off-pump coronary artery bypass: findings from PREVENT IV
.
Ann Thorac Surg
.
2008
;
85
(
2
):
494
9
; discussion 9-500.
5.
Zhao
DX
,
Leacche
M
,
Balaguer
JM
,
Boudoulas
KD
,
Damp
JA
,
Greelish
JP
et al
.
Routine intraoperative completion angiography after coronary artery bypass grafting and 1-stop hybrid revascularization results from a fully integrated hybrid catheterization laboratory/operating room
.
J Am Coll Cardiol
.
2009
;
53
(
3
):
232
41
.
6.
Guida
GA
,
Angelini
GD
.
Pathophysiology and mechanisms of saphenous vein graft failure
.
Braz J Cardiovasc Surg
.
2022
37
Spec 1
32
7
.
7.
Xenogiannis
I
,
Zenati
M
,
Bhatt
DL
,
Rao
SV
,
Rodés-Cabau
J
,
Goldman
S
et al
.
Saphenous vein graft failure: from pathophysiology to prevention and treatment strategies
.
Circulation
.
2021
;
144
(
9
):
728
45
.
8.
Veres
G
,
Hegedűs
P
,
Barnucz
E
,
Zöller
R
,
Klein
S
,
Schmidt
H
et al
.
Endothelial dysfunction of bypass graft: direct comparison of in vitro and in vivo models of ischemia-reperfusion injury
.
PLoS One
.
2015
;
10
(
4
):
e0124025
.
9.
Ward
AO
,
Caputo
M
,
Angelini
GD
,
George
SJ
,
Zakkar
M
.
Activation and inflammation of the venous endothelium in vain graft disease
.
Atherosclerosis
.
2017
;
265
:
266
74
.
10.
Yau
JW
,
Teoh
H
,
Verma
S
.
Endothelial cell control of thrombosis
.
BMC Cardiovasc Disord
.
2015
;
15
:
130
.
11.
Kipshidze
N
,
Dangas
G
,
Tsapenko
M
,
Moses
J
,
Leon
MB
,
Kutryk
M
et al
.
Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions
.
J Am Coll Cardiol
.
2004
;
44
(
4
):
733
9
.
12.
Johnson
JL
,
van Eys
GJ
,
Angelini
GD
,
George
SJ
.
Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metalloproteinase activity in human saphenous vein
.
Arterioscler Thromb Vasc Biol
.
2001
;
21
(
7
):
1146
51
.
13.
Joddar
B
,
Firstenberg
MS
,
Reen
RK
,
Varadharaj
S
,
Khan
M
,
Childers
RC
et al
.
Arterial levels of oxygen stimulate intimal hyperplasia in human saphenous veins via a ROS-dependent mechanism
.
PLoS One
.
2015
;
10
(
3
):
e0120301
.
14.
Jiang
Q
,
Yang
Y
,
Sun
H
,
Tang
Y
,
Lv
F
,
Hu
S
.
Stable hemodynamics within “No-touch” saphenous vein graft
.
Ann Thorac Cardiovasc Surg
.
2020
;
26
(
2
):
88
94
.
15.
Papakonstantinou
NA
,
Baikoussis
NG
,
Goudevenos
J
,
Papadopoulos
G
,
Apostolakis
E
.
Novel no touch technique of saphenous vein harvesting: is great graft patency rate provided
.
Ann Card Anaesth
.
2016
;
19
(
3
):
481
8
.
16.
Deb
S
,
Singh
SK
,
de Souza
D
,
Chu
MWA
,
Whitlock
R
,
Meyer
SR
et al
.
Superior SVG: no touch saphenous harvesting to improve patency following coronary bypass grafting (a multi-Centre randomized control trial, NCT01047449)
.
J Cardiothorac Surg
.
2019
;
14
(
1
):
85
.
17.
Kopjar
T
,
Pinheiro
BB
,
Dashwood
MR
.
No-touch saphenous vein graft harvesting to maintain the success of CABG: comments on the SUPERIOR SVG trial
.
Braz J Cardiovasc Surg
.
2020
;
35
(
4
):
597
9
.
18.
Samano
N
,
Geijer
H
,
Liden
M
,
Fremes
S
,
Bodin
L
,
Souza
D
.
The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: a randomized trial
.
J Thorac Cardiovasc Surg
.
2015
;
150
(
4
):
880
8
.
19.
Girão-Silva
T
,
Fonseca-Alaniz
MH
,
Ribeiro-Silva
JC
,
Lee
J
,
Patil
NP
,
Dallan
LA
et al
.
High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells
.
Sci Rep
.
2021
;
11
(
1
):
13493
.
20.
Stigler
R
,
Steger
C
,
Schachner
T
,
Holfeld
J
,
Edlinger
M
,
Grimm
M
et al
.
The impact of distension pressure on acute endothelial cell loss and neointimal proliferation in saphenous vein grafts
.
Eur J Cardiothorac Surg
.
2012
;
42
(
4
):
e74
9
.
21.
Ruiter
MS
,
Pesce
M
.
Mechanotransduction in coronary vein graft disease
.
Front Cardiovasc Med
.
2018
;
5
:
20
.
22.
Sugaya
A
,
Ohno
N
,
Yashiro
T
,
Kawahito
K
.
Morphological changes in endothelial cell organelles in a No-touch saphenous vein graft
.
Braz J Cardiovasc Surg
.
2022
37
Spec 1
49
56
.
23.
Cheung-Flynn
J
,
Alvis
BD
,
Hocking
KM
,
Guth
CM
,
Luo
W
,
McCallister
R
et al
.
Normal Saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways
.
PLoS One
.
2019
;
14
(
8
):
e0220893
.
24.
Tsakok
M
,
Montgomery-Taylor
S
,
Tsakok
T
.
Storage of saphenous vein grafts prior to coronary artery bypass grafting: is autologous whole blood more effective than saline in preserving graft function
.
Interact Cardiovasc Thorac Surg
.
2012
;
15
(
4
):
720
5
.
25.
Eqbal
A
,
Gupta
S
,
Bisleri
G
.
Storage solutions to improve grafts preservation and longevity in coronary artery bypass grafting surgery: hype or hope
.
Curr Opin Cardiol
.
2021
;
36
(
5
):
616
22
.
26.
Pimentel
MD
,
Lobo Filho
JG
,
Lobo Filho
HG
,
de Castro Miguel
E
,
Pinheiro Paiva
SK
,
Silva Matos
JI
et al
.
Effect of preservation solution and distension pressure on saphenous vein’s endothelium
.
Interact Cardiovasc Thorac Surg
.
2022
35
3
ivac124
.
27.
Wilbring
M
,
Ebner
A
,
Schoenemann
K
,
Knaut
M
,
Tugtekin
SM
,
Zatschler
B
et al
.
Heparinized blood better preserves cellular energy charge and vascular functions of intraoperatively stored saphenous vein grafts in comparison to isotonic sodium-chloride-solution
.
Clin Hemorheol Microcirc
.
2013
;
55
(
4
):
445
55
.
28.
Chen
SW
,
Chu
Y
,
Wu
VC
,
Tsai
FC
,
Nan
YY
,
Lee
HF
et al
.
Microenvironment of saphenous vein graft preservation prior to coronary artery bypass grafting
.
Interact Cardiovasc Thorac Surg
.
2019
;
28
(
1
):
71
8
.
29.
Gaudino
M
,
Antoniades
C
,
Benedetto
U
,
Deb
S
,
Di Franco
A
,
Di Giammarco
G
et al
.
Mechanisms, consequences, and prevention of coronary graft failure
.
Circulation
.
2017
;
136
(
18
):
1749
64
.
30.
McDonald
AI
,
Shirali
AS
,
Aragón
R
,
Ma
F
,
Hernandez
G
,
Vaughn
DA
et al
.
Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities
.
Cell Stem Cell
.
2018
;
23
(
2
):
210
25.e6
.
31.
Moore
KH
,
Murphy
HA
,
George
EM
.
The glycocalyx: a central regulator of vascular function
.
Am J Physiol Regul Integr Comp Physiol
.
2021
320
4
R508
18
.
32.
VanTeeffelen
JW
,
Brands
J
,
Jansen
C
,
Spaan
JA
,
Vink
H
.
Heparin impairs glycocalyx barrier properties and attenuates shear dependent vasodilation in mice
.
Hypertension
.
2007
;
50
(
1
):
261
7
.
33.
Pizzino
G
,
Irrera
N
,
Cucinotta
M
,
Pallio
G
,
Mannino
F
,
Arcoraci
V
et al
.
Oxidative stress: harms and benefits for human health
.
Oxid Med Cell Longev
.
2017
;
2017
:
8416763
.
34.
Redza-Dutordoir
M
,
Averill-Bates
DA
.
Activation of apoptosis signalling pathways by reactive oxygen species
.
Biochim Biophys Acta
.
2016
;
1863
(
12
):
2977
92
.
35.
Ngo
V
,
Duennwald
ML
.
Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease
.
Antioxidants
.
2022
;
11
(
12
):
2345
.
36.
Georgiou-Siafis
SK
,
Tsiftsoglou
AS
.
Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells
.
Biochem Pharmacol
.
2020
;
175
:
113900
.
37.
Herring
BP
,
Hoggatt
AM
,
Burlak
C
,
Offermanns
S
.
Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury
.
Vasc Cell
.
2014
;
6
:
21
.
38.
Raza
S
,
Chang
C
,
Deo
SV
,
Sabik
JF
.
Current role of saphenous vein graft in coronary artery bypass grafting
.
Indian J Thorac Cardiovasc Surg
.
2018
34
Suppl 3
245
50
.
39.
Sedovy
M
,
Leng
X
,
Iqbal
F
,
Renton
M
,
Leaf
M
,
Roberts
K
et al
.
Preserving endothelial integrity in human saphenous veins during preparation for coronary bypass surgery
.
bioRxiv
.
2023
;
25
:
554690
[Preprint]. August 27, 2023.
You do not currently have access to this content.