Introduction: Physiological system complexity represents an imposing challenge to gaining insight into how arteriolar behavior emerges. Further, mechanistic complexity in arteriolar tone regulation requires that a systematic determination of how these processes interact to alter vascular diameter be undertaken. Methods: The present study evaluated the reactivity of ex vivo proximal and in situ distal resistance arterioles in skeletal muscle with challenges across the full range of multiple physiologically relevant stimuli and determined the stability of responses over progressive alterations to each other parameter. The five parameters chosen for examination were (1) metabolism (adenosine concentration), (2) adrenergic activation (norepinephrine concentration), (3) myogenic activation (intravascular pressure), (4) oxygen (superfusate PO2), and (5) wall shear rate (altered intraluminal flow). Vasomotor tone of both arteriole groups following challenge with individual parameters was determined; subsequently, responses were determined following all two- and three-parameter combinations to gain deeper insight into how stimuli integrate to change arteriolar tone. A hierarchical ranking of stimulus significance for establishing arteriolar tone was performed using mathematical and statistical analyses in conjunction with machine learning methods. Results: Results were consistent across methods and indicated that metabolic and adrenergic influences were most robust and stable across all conditions. While the other parameters individually impact arteriolar tone, their impact can be readily overridden by the two dominant contributors. Conclusion: These data suggest that mechanisms regulating arteriolar tone are strongly affected by acute changes to the local environment and that ongoing investigation into how microvessels integrate stimuli regulating tone will provide a more thorough understanding of arteriolar behavior emergence across physiological and pathological states.

1.
Effros
RM
,
Schmid-Schönbein
H
,
Ditzel
J
Microcirculation, current physiologic, medical, and surgical concepts
New York
Academic Press
1981
.
2.
Jackson
WF
.
Myogenic tone in peripheral resistance arteries and arterioles: the pressure is on
.
Front Physiol
.
2021
;
12
:
699517
.
3.
Cipolla
MJ
,
Curry
AB
.
Middle cerebral artery function after stroke: the threshold duration of reperfusion for myogenic activity
.
Stroke
.
2002
;
33
(
8
):
2094
9
.
4.
Butcher
JT
,
Goodwill
AG
,
Stanley
SC
,
Frisbee
JC
.
Differential impact of dilator stimuli on increased myogenic activation of cerebral and skeletal muscle resistance arterioles in obese zucker rats
.
Microcirculation
.
1994
;
20
(
7
):
579
89
.
5.
Jiang
B
,
Seddon
M
,
Fok
H
,
Donald
A
,
Chowienczyk
P
.
Flow-mediated dilation of the radial artery is offset by flow-induced reduction in transmural pressure
.
Hypertension
.
2011
;
57
(
6
):
1145
50
.
6.
Osol
G
,
Cipolla
M
.
Interaction of myogenic and adrenergic mechanisms in isolated, pressurized uterine radial arteries from late-pregnant and nonpregnant rats
.
Am J Obstet Gynecol
.
1993
;
168
(
2
):
697
705
.
7.
Sun
D
,
Huang
A
,
Koller
A
,
Kaley
G
.
Flow-dependent dilation and myogenic constriction interact to establish the resistance of skeletal muscle arterioles
.
Microcirculation
.
1994
;
2
(
3
):
289
95
.
8.
Liu
Y
,
Fredricks
KT
,
Roman
RJ
,
Lombard
JH
.
Response of resistance arteries to reduced PO2 and vasodilators during hypertension and elevated salt intake
.
Am J Physiol
.
1997
273
2 Pt 2
H869
77
.
9.
Fredricks
KT
,
Liu
Y
,
Lombard
JH
.
Response of extraparenchymal resistance arteries of rat skeletal muscle to reduced PO2
.
Am J Physiol
.
1994
267
2 Pt 2
H706
15
.
10.
Butcher
JT
,
Goodwill
AG
,
Frisbee
JC
.
The ex vivo Isolated Skeletal Microvessel Preparation for Investigation of Vascular Reactivity
.
J Vis Exp
.
2012
62
3674
.
11.
Frisbee
JC
,
Maier
KG
,
Falck
JR
,
Roman
RJ
,
Lombard
JH
.
Integration of hypoxic dilation signaling pathways for skeletal muscle resistance arteries
.
Am J Physiol Regul Integr Comp Physiol
.
2002
283
2
R309
19
.
12.
Hill
MA
,
Simpson
BE
,
Meininger
GA
.
Altered cremaster muscle hemodynamics due to disruption of the deferential feed vessels
.
Microvasc Res
.
1990
;
39
(
3
):
349
63
.
13.
Lombard
JH
,
Hinojosa-Laborde
C
,
Cowley
AW
Jr
.
Hemodynamics and microcirculatory alterations in reduced renal mass hypertension
.
Hypertension
.
1989
;
13
(
2
):
128
38
.
14.
Duling
BR
,
Berne
RM
.
Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow
.
Circ Res
.
1970
;
27
(
5
):
669
78
.
15.
Lombard
JH
,
Duling
BR
.
Relative importance of tissue oxygenation and vascular smooth muscle hypoxia in determining arteriolar responses to occlusion in the hamster cheek pouch
.
Circ Res
.
1977
;
41
(
4
):
546
51
.
16.
Lombard
JH
,
Frisbee
JC
,
Greene
AS
,
Hudetz
AG
,
Roman
RJ
,
Tonellato
PJ
.
Microvascular flow and tissue PO(2) in skeletal muscle of chronic reduced renal mass hypertensive rats
.
Am J Physiol Heart Circ Physiol
.
2000
279
5
H2295
302
.
17.
Klitzman
B
,
Popel
AS
,
Duling
BR
.
Oxygen transport in resting and contracting hamster cremaster muscles: experimental and theoretical microvascular studies
.
Microvasc Res
.
1983
;
25
(
1
):
108
31
.
18.
Tabrizchi
R
,
Bedi
S
.
Pharmacology of adenosine receptors in the vasculature
.
Pharmacol Ther
.
2001
;
91
(
2
):
133
47
.
19.
Ramkumar
V
,
Hallam
DM
,
Nie
Z
.
Adenosine, oxidative stress and cytoprotection
.
Jpn J Pharmacol
.
2001
;
86
(
3
):
265
74
.
20.
Frisbee
JC
.
Enhanced arteriolar alpha-adrenergic constriction impairs dilator responses and skeletal muscle perfusion in obese Zucker rats
.
J Appl Physiol
.
1985
;
97
(
2
):
764
72
.
21.
Koller
A
,
Kaley
G
.
Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation
.
Am J Physiol
.
1991
260
3 Pt 2
H862
8
.
22.
Bevan
JA
,
Kaley
G
,
Rubanyi
GM
Flow-dependent regulation of vascular function
New York
Oxford University Press
1995
.
23.
Baker
M
,
Wayland
H
.
On-line volume flow rate and velocity profile measurement for blood in microvessels
.
Microvasc Res
.
1974
;
7
(
1
):
131
43
.
24.
Meininger
GA
,
Mack
CA
,
Fehr
KL
,
Bohlen
HG
.
Myogenic vasoregulation overrides local metabolic control in resting rat skeletal muscle
.
Circ Res
.
1987
;
60
(
6
):
861
70
.
25.
Milnor
WR
Hemodynamics
Baltimore
Williams & Wilkins
1982
.
26.
Chen
T
,
Guestrin
C
XGBoost: a scalable tree boosting system, KDD ‘16: the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, New York
San Francisco, (CA)
ACM
2016
.
27.
Huang
JC
,
Tsai
YC
,
Wu
PY
,
Lien
YH
,
Chien
CY
,
Kuo
CF
.
Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method
.
Comput Methods Programs Biomed
.
2020
;
195
:
105536
.
28.
Zhang
X
,
Yan
C
,
Gao
C
,
Malin
BA
,
Chen
Y
.
Predicting missing values in medical data via XGBoost regression
.
J Healthc Inform Res
.
2020
;
4
:
383
94
.
29.
Wang
R
,
Wang
L
,
Zhang
J
,
He
M
,
Xu
J
.
XGBoost machine learning algorism performed better than regression models in predicting mortality of moderate-to-severe traumatic brain injury
.
World Neurosurg
.
2022
;
163
:
e617
22
.
30.
Zheng
H
,
Yuan
J
,
Chen
L
Short-Term Load Forecasting Using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation
Energies
2017
.
31.
Pedregosa
F
,
Varoquaux
G
,
Gramfort
A
,
Michel
V
,
Grisel
O
,
Blondel
M
.
Scikit-learn: machine learning in Python
.
J Machine Learn Res
.
2011
;
12
(
2011
):
2825
30
.
32.
Winter
E
.
The shapley value
.
Handb Game Theor Econ Appl
.
2002
;
3
:
2025
54
.
33.
Ohta
M
,
Toyama
K
,
Gutterman
DD
,
Campbell
WB
,
Lemaitre
V
,
Teraoka
R
.
Ecto-5'-nucleotidase, CD73, is an endothelium-derived hyperpolarizing factor synthase
.
Arterioscler Thromb Vasc Biol
.
2013
;
33
(
3
):
629
36
.
34.
Charkoudian
N
,
Joyner
MJ
,
Sokolnicki
LA
,
Johnson
CP
,
Eisenach
JH
,
Dietz
NM
.
Vascular adrenergic responsiveness is inversely related to tonic activity of sympathetic vasoconstrictor nerves in humans
.
J Physiol
.
2006
572
Pt 3
821
7
.
35.
Messina
EJ
,
Sun
D
,
Koller
A
,
Wolin
MS
,
Kaley
G
.
Role of endothelium-derived prostaglandins in hypoxia-elicited arteriolar dilation in rat skeletal muscle
.
Circ Res
.
1992
;
71
(
4
):
790
6
.
36.
Thorin-Trescases
N
,
Bevan
JA
.
High levels of myogenic tone antagonize the dilator response to flow of small rabbit cerebral arteries
.
Stroke
.
1998
;
29
(
6
):
1194
200
; discussion 1200-1.
37.
Kuo
L
,
Chilian
WM
,
Davis
MJ
.
Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels
.
Am J Physiol
.
1991
261
6 Pt 2
H1706
15
.
38.
Anschutz
S
,
Schubert
R
.
Modulation of the myogenic response by neurogenic influences in rat small arteries
.
Br J Pharmacol
.
2005
;
146
(
2
):
226
33
.
39.
Frisbee
JC
,
Hollander
JM
,
Brock
RW
,
Yu
HG
,
Boegehold
MA
.
Integration of skeletal muscle resistance arteriolar reactivity for perfusion responses in the metabolic syndrome
.
Am J Physiol Regul Integr Comp Physiol
.
2009
296
6
R1771
82
.
40.
Pittman
RN
.
Oxygen gradients in the microcirculation
.
Acta Physiol
.
2011
;
202
(
3
):
311
22
.
41.
Ikeoka
K
,
Nishigaki
K
,
Ohyanagi
M
,
Faber
JE
.
In vitro analysis of alpha-adrenoceptor interactions with the myogenic response in resistance vessels
.
J Vasc Res
.
1992
;
29
(
4
):
313
21
.
42.
Morff
RJ
,
Granger
HJ
.
Autoregulation of blood flow within individual arterioles in the rat cremaster muscle
.
Circ Res
.
1982
;
51
(
1
):
43
55
.
43.
Nurkiewicz
TR
,
Boegehold
MA
.
Limitation of arteriolar myogenic activity by local nitric oxide: segment-specific effect of dietary salt
.
Am J Physiol
.
1999
277
5
H1946
55
.
44.
Frisbee
JC
.
Regulation of in situ skeletal muscle arteriolar tone: interactions between two parameters
.
Microcirculation
.
1994
;
9
(
6
):
443
62
.
45.
Barden
J
,
Lawrenson
L
,
Poole
JG
,
Kim
J
,
Wray
DW
,
Bailey
DM
.
Limitations to vasodilatory capacity and .VO2 max in trained human skeletal muscle
.
Am J Physiol Heart Circ Physiol
.
2007
292
5
H2491
7
.
46.
Calbet
JA
,
Lundby
C
,
Sander
M
,
Robach
P
,
Saltin
B
,
Boushel
R
.
Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans
.
Am J Physiol Regul Integr Comp Physiol
.
2006
291
2
R447
53
.
47.
Sarelius
I
,
Pohl
U
.
Control of muscle blood flow during exercise: local factors and integrative mechanisms
.
Acta Physiol
.
2010
;
199
(
4
):
349
65
.
48.
Delp
MD
,
Laughlin
MH
.
Regulation of skeletal muscle perfusion during exercise
.
Acta Physiol Scand
.
1998
;
162
(
3
):
411
9
.
49.
Faber
JE
.
In situ analysis of alpha-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation
.
Circ Res
.
1988
;
62
(
1
):
37
50
.
50.
Gore
RW
.
Wall stress: a determinant of regional differences in response of frog microvessels to norepinephrine
.
Am J Physiol
.
1972
;
222
(
1
):
82
91
.
51.
Amburgey
OA
,
Reeves
SA
,
Bernstein
IM
,
Cipolla
MJ
.
Resistance artery adaptation to pregnancy counteracts the vasoconstricting influence of plasma from normal pregnant women
.
Reprod Sci
.
2010
;
17
(
1
):
29
39
.
52.
Meininger
GA
,
Faber
JE
.
Adrenergic facilitation of myogenic response in skeletal muscle arterioles
.
Am J Physiol
.
1991
260
5 Pt 2
H1424
32
.
53.
Johnson
PC
,
Intaglietta
M
.
Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles
.
Am J Physiol
.
1976
;
231
(
6
):
1686
98
.
54.
Muller-Delp
JM
.
Heterogeneous ageing of skeletal muscle microvascular function
.
J Physiol
.
2016
;
594
(
8
):
2285
95
.
55.
Stanhewicz
AE
,
Wenner
MM
,
Stachenfeld
NS
.
Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan
.
Am J Physiol Heart Circ Physiol
.
2018
315
6
H1569
H1588
.
56.
Pabbidi
MR
,
Kuppusamy
M
,
Didion
SP
,
Sanapureddy
P
,
Reed
JT
,
Sontakke
SP
.
Sex differences in the vascular function and related mechanisms: role of 17β-estradiol
.
Am J Physiol Heart Circ Physiol
.
2018
315
6
H1499
518
.
You do not currently have access to this content.