Diabetes mellitus (DM) is a chronic metabolic disease known to cause several microvascular complications, including diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Hyperglycemia plays a key role in inducing diabetic microvascular complications. A cohort of diabetic animal models has been established to study diabetes-related vascular diseases. However, the zebrafish model offers unique advantages in this field. The tiny size and huge offspring numbers of zebrafish make it amenable to perform large-scale analysis or screening. The easily accessible strategies for gene manipulation with morpholino or CRISPR/Cas9 and chemical/drug treatment through microinjection or skin absorption allow establishing the zebrafish DM models by a variety of means. In addition, the transparency of zebrafish embryos makes it accessible to perform in vivo high-resolution imaging of the vascular system. In this review, we focus on the strategies to establish diabetic or hyperglycemic models with zebrafish and the achievements and disadvantages of using zebrafish as a model to study diabetic microvascular complications.

1.
Global estimates for diabetes prevalence to rise between 2015–2040. https://www.carbsmart.com/global-estimates-diabetes-prevalence-2015–2040.html(2017).
2.
Cade
WT
.
Diabetes-related microvascular and macrovascular diseases in the physical therapy setting
.
Phys Ther
.
2008
;
88
(
11
):
1322
35
. .
3.
Folli
F
,
Corradi
D
,
Fanti
P
,
Davalli
A
,
Paez
A
,
Giaccari
A
,
The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach
.
Curr Diabetes Rev
.
2011
;
7
:
313
24
.
4.
Fowler
MJ
.
Microvascular and macrovascular complications of diabetes
.
Clin Diabetes
.
2008
;
26
:
77
82
.
5.
Faselis
C
,
Katsimardou
A
,
Imprialos
K
,
Deligkaris
P
,
Kallistratos
M
,
Dimitriadis
K
.
Microvascular complications of type 2 diabetes mellitus
.
Curr Vasc Pharmacol
.
2020
;
18
:
117
24
.
6.
Lenzen
S
,
Tiedge
M
,
Elsner
M
,
Lortz
S
,
Weiss
H
,
Jörns
A
,
The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus
.
Diabetologia
.
2001
;
44
:
1189
96
.
7.
Breyer
M
,
Böttinger
E
,
Brosius
FC
 3rd
,
Coffman
TM
,
Harris
RC
,
Heilig
CW
,
Mouse models of diabetic nephropathy
.
J Am Soc Nephrol
.
2005
;
16
:
27
45
.
8.
Graham
ML
,
Janecek
JL
,
Kittredge
JA
,
Hering
BJ
,
Schuurman
HJ
.
The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources
.
Comp Med
.
2011
;
61
:
356
60
.
9.
Jörgens
K
,
Hillebrands
JL
,
Hammes
HP
,
Kroll
J
.
Zebrafish: a model for understanding diabetic complications
.
Exp Clin Endocrinol Diabetes
.
2012
;
120
(
4
):
186
7
. .
10.
Gore
AV
,
Monzo
K
,
Cha
YR
,
Pan
W
,
Weinstein
BM
.
Vascular development in the zebrafish
.
Cold Spring Harb Perspect Med
.
2012
;
2
:
a006684
. .
11.
Liu
J
,
Stainier
DY
.
Zebrafish in the study of early cardiac development
.
Circ Res
.
2012
;
110
:
870
4
. .
12.
Isogai
S
,
Horiguchi
M
,
Weinstein
BM
.
The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development
.
Dev Biol
.
2001
;
230
:
278
301
. .
13.
Deshpande
AD
,
Harris-Hayes
M
,
Schootman
M
.
Epidemiology of diabetes and diabetes-related complications
.
Phys Ther
.
2008
;
88
:
1254
64
. .
14.
Olsen
AS
,
Sarras
MP
,
Intine
RV
.
Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus: induced diabetes mellitus impairs limb regeneration
.
Wound Repair Regen
.
2010
;
18
:
532
42
.
15.
Gleeson
M
,
Connaughton
V
,
Arneson
LS
.
Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina
.
Acta Diabetol
.
2007
;
44
:
157
63
. .
16.
Jung
SH
,
Kim
YS
,
Lee
YR
,
Kim
JS
.
High glucose-induced changes in hyaloid-retinal vessels during early ocular development of zebrafish: a short-term animal model of diabetic retinopathy: HG-induced changes in hyaloid-retinal vessels in ZF
.
Br J Pharmacol
.
2016
;
173
:
15
26
.
17.
Elo
B
,
Villano
CM
,
Govorko
D
,
White
LA
.
Larval zebrafish as a model for glucose metabolism: Expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds
.
J Mol Endocrinol
.
2007
;
38
:
433
40
. .
18.
Sharma
KR
,
Heckler
K
,
Stoll
SJ
,
Hillebrands
JL
,
Kynast
K
,
Herpel
E
,
ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions
.
Sci Rep
.
2016
;
6
:
37172
.
19.
Liang
J
,
Gui
Y
,
Wang
W
,
Gao
S
,
Li
J
,
Song
H
.
Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos
.
Birth Defects Res A Clin Mol Teratol
.
2010
;
88
:
480
6
.
20.
Connaughton
VP
,
Baker
C
,
Fonde
L
,
Gerardi
E
,
Slack
C
.
alternate immersion in an external glucose solution differentially affects blood sugar values in older versus younger zebrafish adults
.
Zebrafish
.
2016
;
13
:
87
94
. .
21.
Capiotti
KM
,
Antonioli
R
 Jr
,
Kist
LW
,
Bogo
MR
,
Bonan
CD
,
Da Silva
RS
.
Persistent impaired glucose metabolism in a zebrafish hyperglycemia model
.
Comp Biochem Physiol B Biochem Mol Biol
.
2014
;
171
:
58
65
.
22.
Carnovali
M
,
Luzi
L
,
Banfi
G
,
Mariotti
M
.
Chronic hyperglycemia affects bone metabolism in adult zebrafish scale model
.
Endocrine
.
2016
;
54
:
808
17
. .
23.
Singh
A
,
Castillo
HA
,
Brown
J
,
Kaslin
J
,
Dwyer
KM
,
Gibert
Y
.
High glucose levels affect retinal patterning during zebrafish embryogenesis
.
Sci Rep
.
2019
;
9
:
4121
.
24.
Jörgens
K
,
Stoll
SJ
,
Pohl
J
,
Fleming
TH
,
Sticht
C
,
Nawroth
PP
,
High tissue glucose alters intersomitic blood vessels in zebrafish via methylglyoxal targeting the VEGF receptor signaling cascade
.
Diabetes
.
2015
;
64
:
213
25
.
25.
Nam
YH
,
Rodriguez
I
,
Shin
SW
,
Shim
JH
,
Kim
NW
,
Kim
MC
,
Characteristics of the new insulin-resistant zebrafish model
.
Pharmaceuticals
.
2021
;
14
:
642
.
26.
Zang
L
,
Shimada
Y
,
Nishimura
N
.
Development of a novel zebrafish model for type 2 diabetes mellitus
.
Sci Rep
.
2017
;
7
:
1461
. .
27.
Wang
X
,
Yang
XL
,
Liu
KC
,
Sheng
WL
,
Xia
Q
,
Wang
RC
,
Effects of streptozotocin on pancreatic islet β-cell apoptosis and glucose metabolism in zebrafish larvae
.
Fish Physiol Biochem
.
2020
;
46
:
1025
38
.
28.
Moss
JB
,
Koustubhan
P
,
Greenman
M
,
Parsons
MJ
,
Walter
I
,
Moss
LG
,
Regeneration of the pancreas in adult zebrafish
.
Diabetes
.
2009
;
58
:
1844
51
.
29.
Intine
RV
,
Olsen
AS
,
Sarras
MP
.
A zebrafish model of diabetes mellitus and metabolic memory
.
J Vis Exp
.
2013
;
72
:
e50232
. .
30.
Sarras
MP
,
Leontovich
AA
,
Olsen
AS
,
Intine
RV
.
Impaired tissue regeneration corresponds with altered expression of developmental genes that persists in the metabolic memory state of diabetic zebrafish
.
Wound Repair Regen
.
2013
;
21
:
320
8
. .
31.
Ko
JH
,
Rodriguez
I
,
Joo
SW
,
Kim
HG
,
Lee
YG
,
Kang
TH
,
Synergistic effect of two major components of malva verticillata in the recovery of alloxan-damaged pancreatic islet cells in zebrafish
.
J Med Food
.
2019
;
22
:
196
201
.
32.
Ko
JH
,
Nam
YH
,
Joo
SW
,
Kim
HG
,
Lee
YG
,
Kang
TH
,
Flavonoid 8-o-glucuronides from the aerial parts of malva verticillata and their recovery effects on alloxan-induced pancreatic islets in zebrafish
.
Molecules
.
2018
;
23
:
833
.
33.
Zhao
F
,
Wang
H
,
Wei
P
,
Jiang
G
,
Wang
W
,
Zhang
X
,
Impairment of bisphenol F on the glucose metabolism of zebrafish larvae
.
Ecotoxicol Environ Saf
.
2018
;
165
:
386
92
.
34.
Zhao
F
,
Jiang
G
,
Wei
P
,
Wang
H
,
Ru
S
.
Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio)
.
Ecotoxicol Environ Saf
.
2018
;
147
:
794
802
. .
35.
Kimmel
RA
,
Dobler
S
,
Schmitner
N
,
Walsen
T
,
Freudenblum
J
,
Meyer
D
.
Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment
.
Sci Rep
.
2015
;
5
:
14241
.
36.
Lodd
E
,
Wiggenhauser
LM
,
Morgenstern
J
,
Fleming
TH
,
Poschet
G
,
Büttner
M
,
The combination of loss of glyoxalase1 and obesity results in hyperglycemia
.
JCI Insight
.
2019
;
4
:
126154
.
37.
Qi
H
,
Schmöhl
F
,
Li
X
,
Qian
X
,
Tabler
CT
,
Bennewitz
K
,
Reduced acrolein detoxification in akr1a1a zebrafish mutants causes impaired insulin receptor signaling and microvascular alterations
.
Adv Sci
.
2021
;
8
:
e2101281
.
38.
Curado
S
,
Stainier
DY
,
Anderson
RM
.
Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies
.
Nat Protoc
.
2008
;
3
:
948
54
. .
39.
Pourghadamyari
H
,
Rezaei
M
,
Basiri
M
,
Tahamtani
Y
,
Asgari
B
,
Hassani
SN
,
Generation of a transgenic zebrafish model for pancreatic beta cell regeneration
.
Galen Med J
.
2019
;
8
:
e1056
.
40.
Sarras
MP
 Jr
.
Genetic and chemically-induced Zebrafish models for the study of diabetes mellitus
.
MOJ Anatomy Physiol
.
2018
;
5
:
319
21
.
41.
Maddison
LA
,
Joest
KE
,
Kammeyer
RM
,
Chen
W
.
Skeletal muscle insulin resistance in zebrafish induces alterations in β-cell number and glucose tolerance in an age- and diet-dependent manner
.
Am J Physiol Endocrinol Metab
.
2015
;
308
:
E662
9
. .
42.
Chang
T
,
Wang
R
,
Olson
DJ
,
Mousseau
DD
,
Ross
AR
,
Wu
L
.
Modification of Akt1 by methylglyoxal promotes the proliferation of vascular smooth muscle cells
.
FASEB J
.
2011
;
25
:
1746
57
.
43.
Olivares
AM
,
Althoff
K
,
Chen
GF
,
Wu
S
,
Morrisson
MA
,
DeAngelis
MM
,
Animal models of diabetic retinopathy
.
Curr Diab Rep
.
2017
;
17
:
93
.
44.
Benchoula
K
,
Khatib
A
,
Quzwain
FMC
,
Che Mohamad
CA
,
Wan Sulaiman
WMA
,
Abdul Wahab
R
,
Optimization of hyperglycemic induction in zebrafish and evaluation of its blood glucose level and metabolite fingerprint treated with psychotria malayana jack leaf extract
.
Molecules
.
2019
;
24
:
1506
.
45.
Shin
E
,
Hong
BN
,
Kang
TH
.
An optimal establishment of an acute hyperglycemia zebrafish model
.
AJPP
.
2012
;
6
:
2922
8
.
46.
Moulton
JD
.
Using morpholinos to control gene expression
.
Curr Protoc Nucleic Acid Chem
.
2017
;
68
:
4
. .
47.
Fleming
T
,
Cuny
J
,
Nawroth
G
,
Djuric
Z
,
Humpert
PM
,
Zeier
M
,
Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates?
Diabetologia
.
2012
;
55
:
1151
5
.
48.
Irion
U
,
Krauss
J
,
Nüsslein-Volhard
C
.
Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system
.
Development
.
2014
;
141
:
4827
30
. .
49.
Wiggenhauser
LM
,
Qi
H
,
Stoll
SJ
,
Metzger
L
,
Bennewitz
K
,
Poschet
G
,
Activation of retinal angiogenesis in hyperglycemic pdx1−/− zebrafish mutants
.
Diabetes
.
2020
;
69
:
1020
31
.
50.
Li
M
,
Zhao
L
,
Page-McCaw
PS
,
Chen
W
.
Zebrafish genome engineering using the CRISPR-Cas9 system
.
Trends Genet
.
2016
;
32
:
815
27
. .
51.
Yau
JWY
,
Rogers
SL
,
Kawasaki
R
,
Lamoureux
EL
,
Kowalski
JW
,
Bek
T
,
Global prevalence and major risk factors of diabetic retinopathy
.
Diabetes Care
.
2012
;
35
:
556
64
.
52.
Toh
H
,
Smolentsev
A
,
Bozadjian
RV
,
Keeley
PW
,
Lockwood
MD
,
Sadjadi
R
,
Vascular changes in diabetic retinopathy: a longitudinal study in the Nile rat
.
Lab Invest
.
2019
;
99
:
1547
60
.
53.
Agemy
SA
,
Scripsema
NK
,
Shah
CM
,
Chui
T
,
Garcia
PM
,
Lee
JG
,
Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients
.
Retina
.
2015
;
35
:
2353
63
.
54.
Duh
EJ
,
Sun
JK
,
Stitt
AW
.
Diabetic retinopathy: current understanding, mechanisms, and treatment strategies
.
JCI Insight
.
2017
;
2
:
e93751
. .
55.
Richardson
R
,
Tracey-White
D
,
Webster
A
,
Moosajee
M
.
The zebrafish eye-a paradigm for investigating human ocular genetics
.
Eye
.
2017
;
31
:
68
86
. .
56.
Alvarez
Y
,
Cederlund
ML
,
Cottell
DC
,
Bill
BR
,
Ekker
SC
,
Torres-Vazquez
J
,
Genetic determinants of hyaloid and retinal vasculature in zebrafish
.
BMC Dev Biol
.
2007
;
7
:
114
.
57.
Lee
Y
,
Yang
J
.
Development of a zebrafish screening model for diabetic retinopathy induced by hyperglycemia: reproducibility verification in animal model
.
Biomed Pharmacother
.
2021
;
135
:
111201
. .
58.
Yu
S
,
Lee
IS
,
Jung
SH
,
Lee
YM
,
Lee
YR
,
Kim
JH
,
Caffeoylated phenylpropanoid glycosides from brandisia hancei inhibit advanced glycation end product formation and aldose reductase in vitro and vessel dilation in larval zebrafish in vivo
.
Planta Med
.
2013
;
79
:
1705
9
.
59.
Lee
IS
,
Yu
SY
,
Jung
SH
,
Lee
YR
,
Lee
YM
,
Kim
JH
,
proanthocyanidins from spenceria ramalana and their effects on age formation in vitro and hyaloid-retinal vessel dilation in larval zebrafish in vivo
.
J Nat Prod
.
2013
;
76
:
1881
8
.
60.
Wiggenhauser
LM
,
Kohl
K
,
Dietrich
N
,
Hammes
HP
,
Kroll
J
.
Studying diabetes through the eyes of a fish: microdissection, visualization, and analysis of the adult tg(fli:EGFP) zebrafish retinal vasculature
.
J Vis Exp
.
2017
:
e56674
. .
61.
Hwang
J
,
Yang
HW
,
Lu
YA
,
Je
JG
,
Lee
HG
,
Fernando
KHN
,
Phloroglucinol and dieckol isolated from Ecklonia cava suppress impaired diabetic angiogenesis: a study of in-vitro and in-vivo
.
Biomed Pharmacother
.
2021
;
138
:
111431
.
62.
Ali
Z
,
Zang
J
,
Lagali
N
,
Schmitner
N
,
Salvenmoser
W
,
Mukwaya
A
,
Photoreceptor degeneration accompanies vascular changes in a zebrafish model of diabetic retinopathy
.
Invest Ophthalmol Vis Sci.
2020
;
61
:
43
.
63.
Ennerfelt
H
,
Voithofer
G
,
Tibbo
M
,
Miller
D
,
Warfield
R
,
Allen
S
,
Disruption of peripheral nerve development in a zebrafish model of hyperglycemia
.
J Neurophysiol
.
2019
;
122
:
862
71
.
64.
Waldron
AL
,
Schroder
PA
,
Bourgon
KL
,
Bolduc
JK
,
Miller
JL
,
Pellegrini
AD
,
Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity
.
J Diabetes Complications
.
2018
;
32
:
249
57
.
65.
van Rooijen
E
,
Voest
EE
,
Logister
I
,
Bussmann
J
,
Korving
J
,
van Eeden
FJ
,
von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish
.
Dis Model Mech
.
2010
;
3
:
343
53
.
66.
Gross
JL
,
de Azevedo
MJ
,
Silveiro
SP
,
Canani
LH
,
Caramori
ML
,
Zelmanovitz
T
.
Diabetic nephropathy: diagnosis, prevention, and treatment
.
Diabetes Care
.
2005
;
28
(
1
):
164
76
. .
67.
Reddy
MA
,
Tak Park
J
,
Natarajan
R
.
Epigenetic modifications in the pathogenesis of diabetic nephropathy
.
Semin Nephrol
.
2013
;
33
:
341
53
. .
68.
Kottaisamy
CPD
,
Raj
DS
,
Prasanth Kumar
V
,
Sankaran
U
.
Experimental animal models for diabetes and its related complications-a review
.
Lab Anim Res
.
2021
;
37
(
1
):
23
. .
69.
Rask-Madsen
C
,
King
GL
.
Vascular complications of diabetes: mechanisms of injury and protective factors
.
Cell Metab
.
2013
;
17
:
20
33
. .
70.
Betz
B
,
Conway
BR
.
Recent advances in animal models of diabetic nephropathy
.
Nephron Exp Nephrol
.
2014
;
126
(
4
):
191
5
. .
71.
Drummond
IA
,
Davidson
AJ
.
Chapter 9: zebrafish kidney development
. In:
Detrich
HW
,
Westerfield
M
,
Zon
LI
, editors.
Methods in cell biology
Academic Press
;
2010
. p.
100 233
60
.
72.
Naylor
RW
,
Qubisi
SS
,
Davidson
AJ
.
Zebrafish pronephros development
. In:
Miller
RK
, editor
Kidney Development and Disease
,
Springer International Publishing
;
2017
. p.
27
53
.
73.
Morales
EE
,
Wingert
RA
.
Zebrafish as a model of kidney disease
. In:
Miller
RK
, editor.
Kidney development and disease
Springer International Publishing
;
2017
. p.
55
75
. .
74.
Jefferson
JA
,
Shankland
SJ
,
Pichler
RH
.
Proteinuria in diabetic kidney disease: a mechanistic viewpoint
.
Kidney Int
.
2008
;
74
:
22
36
. .
75.
American Diabetes Association
.
7 Diabetes technology: standards of medical care in diabetes-2020
.
Diabetes Care
.
2020
;
43
:
S77
88
. .
76.
Dyck
PJ
,
Giannini
C
.
Pathologic alterations in the diabetic neuropathies of humans: a review
.
J Neuropathol Exp Neurol
.
1996
;
55
:
1181
93
. .
77.
Ibrahim
S
,
Harris
ND
,
Radatz
M
,
Selmi
F
,
Rajbhandari
S
,
Brady
L
,
A new minimally invasive technique to show nerve ischaemia in diabetic neuropathy
.
Diabetologia
.
1999
;
42
:
737
42
.
78.
Young
MJ
,
Veves
A
,
Walker
MG
,
Boulton
AJ
.
Correlations between nerve function and tissue oxygenation in diabetic patients: further clues to the aetiology of diabetic neuropathy?
Diabetologia
.
1992
;
35
:
1146
50
. .
79.
O’Brien
PD
,
Sakowski
SA
,
Feldman
EL
.
Mouse models of diabetic neuropathy
.
ILAR J
.
2014
;
54
:
259
72
.
80.
Ozaki
K
,
Terayama
Y
,
Matsuura
T
,
Narama
I
.
Effect of combined dyslipidemia and hyperglycemia on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats
.
J Toxicol Pathol
.
2018
;
31
:
125
33
. .
81.
Schmidt
RE
.
Autonomic neuropathy in experimental models of diabetes mellitus
. In:
Zochodne
DW
,
Malik
RA
, editors.
Handbook of clinical neurology
Elsevier
;
2014
.
Vol. 126
. p.
579
602
. .
82.
Sima
AA
,
Robertson
DM
.
Peripheral neuropathy in mutant diabetic mouse [C57BL/Ks (db/db)]
.
Acta Neuropathol
.
1978
;
41
:
85
9
. .
83.
Muthuraman
A
,
Ramesh
M
,
Sood
S
.
Development of animal model for vasculatic neuropathy: Induction by ischemic-reperfusion in the rat femoral artery
.
J Neurosci Methods
.
2010
;
186
:
215
21
. .
84.
Rocker
A
,
Howell
J
,
Voithofer
G
,
Clark
JK
.
Acute effects of hyperglycemia on the peripheral nervous system in zebrafish (Danio rerio) following nitroreductase-mediated β-cell ablation
.
Am J Physiol Regul Integr Comp Physiol
.
2019
;
316
:
R395
405
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.