Hypertension is considered a risk factor for a series of systematic diseases. Known factors including genetic predisposition, age, and diet habits are strongly associated with the initiation of hypertension. The current study aimed to investigate the role of miR-22-3p in hypertension. In this study, we discovered that the miR-22-3p level was significantly decreased in the thoracic aortic vascular tissues and aortic smooth muscle cells (ASMCs) of spontaneously hypertensive rats. Functionally, the overexpression of miR-22-3p facilitated the switch of ASMCs from the synthetic to contractile phenotype. To investigate the underlying mechanism, we predicted 11 potential target mRNAs for miR-22-3p. After screening, chromodomain helicase DNA-binding 9 (CHD9) was validated to bind with miR-22-3p. Rescue assays showed that the co-overexpression of miR-22-3p and CHD9 reversed the inhibitory effect of miR-22-3p mimics on cell proliferation, migration, and oxidative stress in ASMCs. Finally, miR-22-3p suppressed vascular remodeling and oxidative stress in vivo. Overall, miR-22-3p regulated ASMC phenotype switch by targeting CHD9. This new discovery provides a potential insight into hypertension treatment.

1.
Doyle
AE
.
Hypertension and vascular disease
.
Am J Hypertens
.
1991
;
4
(
2 Pt 2
):
103s
6s
. .
2.
Elliott
WJ
.
Systemic hypertension
.
Curr Probl Cardiol
.
2007
;
32
(
4
):
201
59
. .
3.
Pistoia
F
,
Sacco
S
,
Degan
D
,
Tiseo
C
,
Ornello
R
,
Carolei
A
.
Hypertension and stroke: epidemiological aspects and clinical evaluation
.
High Blood Press Cardiovasc Prev
.
2016
;
23
(
1
):
9
18
. .
4.
Horowitz
B
,
Miskulin
D
,
Zager
P
.
Epidemiology of hypertension in CKD
.
Adv Chronic Kidney Dis
.
2015
;
22
(
2
):
88
95
. .
5.
Yu
K
,
Zhang
T
,
Li
X
.
Genetic role of CYP4A11 polymorphisms in the risk of developing cardiovascular and cerebrovascular diseases
.
Ann Hum Genet
.
2018
;
82
(
6
):
370
81
. .
6.
Wang
Z
,
Chen
Z
,
Zhang
L
,
Wang
X
,
Hao
G
,
Zhang
Z
, et al.
Status of hypertension in China: results from the China hypertension survey, 2012–2015
.
Circulation
.
2018
;
137
(
22
):
2344
56
. .
7.
Narkiewicz
K
.
Diagnosis and management of hypertension in obesity
.
Obes Rev
.
2006
;
7
(
2
):
155
62
. .
8.
Touyz
RM
,
Alves-Lopes
R
,
Rios
FJ
,
Camargo
LL
,
Anagnostopoulou
A
,
Arner
A
, et al.
Vascular smooth muscle contraction in hypertension
.
Cardiovasc Res
.
2018
;
114
(
4
):
529
39
. .
9.
Son
M
,
Oh
S
,
Jang
JT
,
Park
CH
,
Son
KH
,
Byun
K
.
Attenuating effects of pyrogallol-phloroglucinol-6,6-bieckol on vascular smooth muscle cell phenotype changes to osteoblastic cells and vascular calcification induced by high fat diet
.
Nutrients
.
2020
;
12
(
9
):
2777
. .
10.
DeLalio
LJ
,
Keller
AS
,
Chen
J
,
Boyce
AKJ
,
Artamonov
MV
,
Askew-Page
HR
, et al.
Interaction between pannexin 1 and caveolin-1 in smooth muscle can regulate blood pressure
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
9
):
2065
78
. .
11.
Okuyama
Y
,
Hirawa
N
,
Fujita
M
,
Fujiwara
A
,
Ehara
Y
,
Yatsu
K
, et al.
The effects of anti-hypertensive drugs and the mechanism of hypertension in vascular smooth muscle cell-specific ATP2B1 knockout mice
.
Hypertens Res
.
2018
;
41
(
2
):
80
7
. .
12.
Fan
G
,
Cui
Y
,
Gollasch
M
,
Kassmann
M
.
Elementary calcium signaling in arterial smooth muscle
.
Channels
.
2019
;
13
(
1
):
505
19
. .
13.
Majesky
MW
,
Horita
H
,
Ostriker
A
,
Lu
S
,
Regan
JN
,
Bagchi
A
, et al.
Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4
.
Circ Res
.
2017
;
120
(
2
):
296
311
. .
14.
Jin
L
,
Lin
X
,
Yang
L
,
Fan
X
,
Wang
W
,
Li
S
, et al.
AK098656, a novel vascular smooth muscle cell-dominant long noncoding rna, promotes hypertension
.
Hypertension
.
2018
;
71
(
2
):
262
72
. .
15.
Brown
IAM
,
Diederich
L
,
Good
ME
,
DeLalio
LJ
,
Murphy
SA
,
Cortese-Krott
MM
, et al.
Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
9
):
1969
85
. .
16.
Tuder
RM
.
Pulmonary vascular remodeling in pulmonary hypertension
.
Cell Tissue Res
.
2017
;
367
(
3
):
643
9
. .
17.
Stenmark
KR
,
Frid
MG
,
Graham
BB
,
Tuder
RM
.
Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension
.
Cardiovasc Res
.
2018
;
114
(
4
):
551
64
. .
18.
Lee
YS
,
Dutta
A
.
MicroRNAs in cancer
.
Annu Rev Pathol
.
2009
;
4
:
199
227
. .
19.
Arrigoni
A
,
Ranzani
V
,
Rossetti
G
,
Panzeri
I
,
Abrignani
S
,
Bonnal
RJ
, et al.
Analysis RNA-seq and Noncoding RNA
.
Methods Mol Biol
.
2016
;
1480
:
125
35
. .
20.
Vaschetto
LM
.
miRNA activation is an endogenous gene expression pathway
.
RNA Biol
.
2018
;
15
(
6
):
826
8
. .
21.
Afonso-Grunz
F
,
Müller
S
.
Principles of miRNA-mRNA interactions: beyond sequence complementarity
.
Cell Mol Life Sci
.
2015
;
72
(
16
):
3127
41
. .
22.
Kriegel
AJ
,
Baker
MA
,
Liu
Y
,
Liu
P
,
Cowley
AW
,
Liang
M
.
Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes
.
Hypertension
.
2015
;
66
(
4
):
793
9
. .
23.
Liu
Y
,
Usa
K
,
Wang
F
,
Liu
P
,
Geurts
AM
,
Li
J
, et al.
MicroRNA-214-3p in the kidney contributes to the development of hypertension
.
J Am Soc Nephrol
.
2018
;
29
(
10
):
2518
28
. .
24.
Huo
KG
,
Richer
C
,
Berillo
O
,
Mahjoub
N
,
Fraulob-Aquino
JC
,
Barhoumi
T
, et al.
miR-431-5p knockdown protects against angiotensin ii-induced hypertension and vascular injury
.
Hypertension
.
2019
;
73
(
5
):
1007
17
. .
25.
Huang
SC
,
Wang
M
,
Wu
WB
,
Wang
R
,
Cui
J
,
Li
W
, et al.
Mir-22-3p inhibits arterial smooth muscle cell proliferation and migration and neointimal hyperplasia by targeting HMGB1 in arteriosclerosis obliterans
.
Cell Physiol Biochem
.
2017
;
42
(
6
):
2492
506
. .
26.
Li
D
,
Zhang
C
,
Li
J
,
Che
J
,
Yang
X
,
Xian
Y
, et al.
Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD
.
Aging
.
2019
;
11
(
20
):
8792
809
. .
27.
Zhang
Q
,
Liu
W
,
Zhang
HM
,
Xie
GY
,
Miao
YR
,
Xia
M
, et al.
hTFtarget: a comprehensive database for regulations of human transcription factors and their targets
.
Genomics Proteomics Bioinformatics
.
2020
;
18
(
2
):
120
8
. .
28.
Rosa
CM
,
Gimenes
R
,
Campos
DH
,
Guirado
GN
,
Gimenes
C
,
Fernandes
AA
, et al.
Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus
.
Cardiovasc Diabetol
.
2016
;
15
(
1
):
126
. .
29.
Wang
Y
,
Dong
J
,
Liu
P
,
Lau
CW
,
Gao
Z
,
Zhou
D
, et al.
Ginsenoside Rb3 attenuates oxidative stress and preserves endothelial function in renal arteries from hypertensive rats
.
Br J Pharmacol
.
2014
;
171
(
13
):
3171
81
. .
30.
Dixon
DL
,
Griggs
KM
,
De Pasquale
CG
,
Bersten
AD
.
Pulmonary effects of chronic elevation in microvascular pressure differ between hypertension and myocardial infarct induced heart failure
.
Heart Lung Circ
.
2015
;
24
(
2
):
158
64
. .
31.
Rosendorff
C
.
Treatment: special conditions: co-existing heart disease: coronary artery disease, myocardial infarction, heart failure
.
J Am Soc Hypertens
.
2015
;
9
(
8
):
651
4
; quiz 655. .
32.
Xie
Q
,
Hao
CM
,
Ji
L
,
Hu
D
,
Zhu
T
,
Li
X
, et al.
ACEI/ARB underused in patients with type 2 diabetes in Chinese population (CCMR-3B study)
.
PLoS One
.
2015
;
10
(
2
):
e0116970
. .
33.
Jackson
KL
,
Palma-Rigo
K
,
Nguyen-Huu
TP
,
Davern
PJ
,
Head
GA
.
Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice
.
J Hypertens
.
2014
;
32
(
3
):
575
86
. .
34.
Xhignesse
P
,
Krzesinski
F
,
Krzesinski
JM
.
[Hypertensive crisis]
.
Rev Med Liege
.
2018
;
73
(
5–6
):
326
32
.
35.
Thompson
AA
,
Lawrie
A
.
Targeting vascular remodeling to treat pulmonary arterial hypertension
.
Trends Mol Med
.
2017
;
23
(
1
):
31
45
. .
36.
Dai
Z
,
Zhu
MM
,
Peng
Y
,
Machireddy
N
,
Evans
CE
,
Machado
R
, et al.
Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a HIF-2α inhibitor
.
Am J Respir Crit Care Med
.
2018
;
198
(
11
):
1423
34
. .
37.
Wang
YN
,
Shan
K
,
Yao
MD
,
Yao
J
,
Wang
JJ
,
Li
X
, et al.
Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling
.
Hypertension
.
2016
;
68
(
3
):
736
48
. .
38.
Baeyens
N
,
Schwartz
MA
.
Biomechanics of vascular mechanosensation and remodeling
.
Mol Biol Cell
.
2016
;
27
(
1
):
7
11
. .
39.
Nemecz
M
,
Alexandru
N
,
Tanko
G
,
Georgescu
A
.
Role of microRNA in endothelial dysfunction and hypertension
.
Curr Hypertens Rep
.
2016
;
18
(
12
):
87
. .
40.
Li
X
,
Cai
W
,
Xi
W
,
Sun
W
,
Shen
W
,
Wei
T
, et al.
MicroRNA-31 regulates immunosuppression in Ang II (Angiotensin II)-induced hypertension by targeting Ppp6C (Protein Phosphatase 6c)
.
Hypertension
.
2019
;
73
(
5
):
e14
24
. .
41.
Ge
QM
,
Huang
CM
,
Zhu
XY
,
Bian
F
,
Pan
SM
.
Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways
.
PLoS One
.
2017
;
12
(
3
):
e0173292
. .
42.
Ogawa
R
,
Fujita
K
,
Ito
K
.
Mouse embryonic dorsal root ganglia contain pluripotent stem cells that show features similar to embryonic stem cells and induced pluripotent stem cells
.
Biol Open
.
2017
;
6
(
5
):
602
18
. .
43.
Xu
L
,
Peng
H
,
Huang
XX
,
Xia
YB
,
Hu
KF
,
Zhang
ZM
.
Decreased expression of chromodomain helicase DNA-binding protein 9 is a novel independent prognostic biomarker for colorectal cancer
.
Braz J Med Biol Res
.
2018
;
51
(
9
):
e7588
. .
44.
Yuan
H
,
Du
S
,
Deng
Y
,
Xu
X
,
Zhang
Q
,
Wang
M
, et al.
Effects of microRNA-208a on inflammation and oxidative stress in ketamine-induced cardiotoxicity through Notch/NF-κB signal pathways by CHD9
.
Biosci Rep
.
2019
;
39
(
5
):
BSR20182381
. .
45.
Yuan
H
,
Du
S
,
Deng
Y
,
Xu
X
,
Zhang
Q
,
Wang
M
, et al.
Effects of microRNA-208a on inflammation and oxidative stress in ketamine-induced cardiotoxicity through Notch/NF-κB signal pathways by CHD9
.
Biosci Rep
.
2019
;
39
(
5
):
BSR20182381
. .
46.
Zhang
C
,
Chen
D
,
Maguire
EM
,
He
S
,
Chen
J
,
An
W
, et al.
Cbx3 inhibits vascular smooth muscle cell proliferation, migration, and neointima formation
.
Cardiovasc Res
.
2018
;
114
(
3
):
443
55
. .
47.
Guo
Q
,
Huang
F
,
Qing
Y
,
Feng
S
,
Xiao
X
,
Wang
Y
, et al.
Decreased Jagged1 expression in vascular smooth muscle cells delays endothelial regeneration in arteriovenous graft
.
Cardiovasc Res
.
2020
;
116
(
13
):
2142
55
. .
48.
Wu
JR
,
Yeh
JL
,
Liou
SF
,
Dai
ZK
,
Wu
BN
,
Hsu
JH
.
Gamma-secretase inhibitor prevents proliferation and migration of ductus arteriosus smooth muscle cells through the Notch3-HES1/2/5 pathway
.
Int J Biol Sci
.
2016
;
12
(
9
):
1063
73
. .
49.
Yang
K
,
Ren
J
,
Li
X
,
Wang
Z
,
Xue
L
,
Cui
S
, et al.
Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype
.
Eur Heart J
.
2020
;
41
(
26
):
2442
53
. .
50.
Fang
Q
,
Tian
M
,
Wang
F
,
Zhang
Z
,
Du
T
,
Wang
W
, et al.
Amlodipine induces vasodilation via Akt2/Sp1-activated miR-21 in smooth muscle cells
.
Br J Pharmacol
.
2019
;
176
(
13
):
2306
20
. .
51.
Bao
H
,
Li
HP
,
Shi
Q
,
Huang
K
,
Chen
XH
,
Chen
YX
, et al.
Lamin A/C negatively regulated by miR-124-3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats
.
Acta Physiol
.
2020
;
228
(
3
):
e13374
. .
52.
Kimura
M
,
Horie
T
,
Baba
O
,
Ide
Y
,
Tsuji
S
,
Ruiz Rodriguez
R
, et al.
Homeobox A4 suppresses vascular remodeling by repressing YAP/TEAD transcriptional activity
.
EMBO Rep
.
2020
;
21
(
4
):
e48389
. .
53.
Xia
X
,
Zhou
C
,
He
X
,
Liu
C
,
Wang
G
,
Sun
X
.
The relationship between estrogen-induced phenotypic transformation and proliferation of vascular smooth muscle and hypertensive intracerebral hemorrhage
.
Ann Transl Med
.
2020
;
8
(
12
):
762
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.