Introduction: The sympathetic nervous system can modulate arteriolar tone through release of adenosine triphosphate and norepinephrine, which bind to purinergic and adrenergic receptors (ARs), respectively. The expression pattern of these receptors, as well as the composition of neurotransmitters released from perivascular nerves (PVNs), can vary both in organ systems within and across species, such as mice and rats. Objective: This study explores the function of α1A subtypes in mouse and rat third-order mesenteric arteries and investigates PVN-mediated vasoconstriction to identify which neurotransmitters are released from sympathetic PVNs. Methods: Third-order mesenteric arteries from male C57BL/6J mice and Wistar rats were isolated and mounted on a wire myograph for functional assessment. Arteries were exposed to phenylephrine (PE) and then incubated with either α1A antagonist RS100329 (RS) or α1D antagonist BMY7378, before reexposure to PE. Electrical field stimulation was performed by passing current through platinum electrodes positioned adjacent to arteries in the absence and presence of a nonspecific alpha AR blocker phentolamine and/or P2X1-specific purinergic receptor blocker NF449. Results: Inhibition of α1 ARs by RS revealed that PE-induced vasoconstriction is primarily mediated through α1A and that the contribution of the α1A AR is greater in rats than in mice. In the mouse model, sympathetic nerve-mediated vasoconstriction is mediated by both ARs and purinergic receptors, whereas in rats, vasoconstriction appeared to only be mediated by ARs and a nonpurinergic neurotransmitter. Further, neither model demonstrated that α1D ARs play a significant role in PE-mediated vasoconstriction. Conclusions: The mesenteric arteries of male C57BL/6J mice and Wistar rats have subtle differences in the signaling mechanisms used to mediate vasoconstriction. As signaling pathways in humans under physiological and pathophysiological conditions become better defined, the current study may inform animal model selection for preclinical studies.

1.
Westcott
EB
,
Segal
SS
.
Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling
.
Microcirculation
.
2013
;
20
(
3
):
217
38
. .
2.
Piascik
MT
,
Soltis
EE
,
Piascik
MM
,
Macmillan
LB
.
Alpha-adrenoceptors and vascular regulation: molecular, pharmacologic and clinical correlates
.
Pharmacol Ther
.
1996
;
72
(
3
):
215
41
. .
3.
Faber
JE
.
In situ analysis of alpha-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation
.
Circ Res
.
1988
;
62
(
1
):
37
50
. .
4.
Ohyanagi
M
,
Faber
JE
,
Nishigaki
K
.
Differential activation of alpha 1- and alpha 2-adrenoceptors on microvascular smooth muscle during sympathetic nerve stimulation
.
Circ Res
.
1991
;
68
(
1
):
232
44
. .
5.
Moore
AW
,
Jackson
WF
,
Segal
SS
.
Regional heterogeneity of α-adrenoreceptor subtypes in arteriolar networks of mouse skeletal muscle
.
J Physiol
.
2010
;
588
(
Pt 21
):
4261
74
. .
6.
Vanhoutte
PM
,
Verbeuren
TJ
,
Webb
RC
.
Local modulation of adrenergic neuroeffector interaction in the blood vessel well
.
Physiol Rev
.
1981
;
61
(
1
):
151
247
. .
7.
Bagher
P
,
Segal
SS
.
Regulation of blood flow in the microcirculation: role of conducted vasodilation
.
Acta Physiol
.
2011
;
202
(
3
):
271
84
. .
8.
Long
JB
,
Segal
SS
.
Quantifying perivascular sympathetic innervation: regional differences in male C57BL/6 mice at 3 and 20 months
.
J Neurosci Methods
.
2009
;
184
(
1
):
124
8
. .
9.
Yokomizo
A
,
Takatori
S
,
Hashikawa-Hobara
N
,
Goda
M
,
Kawasaki
H
.
Characterization of perivascular nerve distribution in rat mesenteric small arteries
.
Biol Pharm Bull
.
2015
;
38
(
11
):
1757
64
. .
10.
Moore
AW
,
Bearden
SE
,
Segal
SS
.
Regional activation of rapid onset vasodilatation in mouse skeletal muscle: regulation through alpha-adrenoreceptors
.
J Physiol
.
2010
;
588
(
Pt 17
):
3321
31
.
11.
Haug
SJ
,
Segal
SS
.
Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of alpha1- and alpha2-adrenoreceptor activation
.
J Physiol
.
2005
;
563
(
Pt 2
):
541
55
. .
12.
Piascik
MT
,
Smith
MS
,
Barron
KW
,
Soltis
EE
.
The regulation of regional hemodynamics by alpha-1 adrenoceptor subtypes in the conscious rat
.
J Pharmacol Exp Ther
.
1993
;
267
(
3
):
1250
5
.
13.
Stassen
FR
,
Willemsen
MJ
,
Janssen
GM
,
DeMey
JG
.
Alpha 1-adrenoceptor subtypes in rat aorta and mesenteric small arteries are preserved during left ventricular dysfunction post-myocardial infarction
.
Cardiovasc Res
.
1997
;
33
(
3
):
706
13
. .
14.
Colucci
WS
,
Gimbrone
MA
 Jr
,
Alexander
RW
.
Characterization of postsynaptic alpha-adrenergic receptors by [3H]-dihydroergocryptine binding in muscular arteries from the rat mesentery
.
Hypertension
.
1980
;
2
(
2
):
149
55
. .
15.
Colucci
WS
,
Gimbrone
MA
 Jr
,
Alexander
RW
.
Regulation of the postsynaptic alpha-adrenergic receptor in rat mesenteric artery. Effects of chemical sympathectomy and epinephrine treatment
.
Circ Res
.
1981
;
48
(
1
):
104
11
. .
16.
Methven
L
,
McBride
M
,
Wallace
GA
,
McGrath
JC
.
The alpha 1B/D-adrenoceptor knockout mouse permits isolation of the vascular alpha 1A-adrenoceptor and elucidates its relationship to the other subtypes
.
Br J Pharmacol
.
2009
;
158
(
1
):
209
24
. .
17.
Burnstock
G
.
Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates
.
Pharmacol Rev
.
1969
;
21
(
4
):
247
324
..
18.
Hungerford
JE
,
Sessa
WC
,
Segal
SS
.
Vasomotor control in arterioles of the mouse cremaster muscle
.
FASEB J
.
2000
;
14
(
1
):
197
207
. .
19.
Garland
CJ
,
Smirnov
SV
,
Bagher
P
,
Lim
CS
,
Huang
CY
,
Mitchell
R
, et al
TRPM4 inhibitor 9-phenanthrol activates endothelial cell intermediate conductance calcium-activated potassium channels in rat isolated mesenteric artery
.
Br J Pharmacol
.
2015
;
172
(
4
):
1114
23
. .
20.
Buus
NH
,
VanBavel
E
,
Mulvany
MJ
.
Differences in sensitivity of rat mesenteric small arteries to agonists when studied as ring preparations or as cannulated preparations
.
Br J Pharmacol
.
1994
;
112
(
2
):
579
87
. .
21.
Gros
R
,
Van Wert
R
,
You
X
,
Thorin
E
,
Husain
M
.
Effects of age, gender, and blood pressure on myogenic responses of mesenteric arteries from C57BL/6 mice
.
Am J Physiol Heart Circ Physiol
.
2002
;
282
(
1
):
H380
8
. .
22.
Boerman
EM
,
Segal
SS
.
Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age
.
J Physiol
.
2016
;
594
(
8
):
2323
38
. .
23.
Ye
X
,
Beckett
T
,
Bagher
P
,
Garland
CJ
,
Dora
KA
.
VEGF-A inhibits agonist-mediated Ca2+ responses and activation of IKCa channels in mouse resistance artery endothelial cells
.
J Physiol
.
2018
;
596
(
16
):
3553
66
.
24.
Tordoff
MG
,
Bachmanov
AA
,
Reed
DR
.
Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content
.
Physiol Behav
.
2007
;
91
(
5
):
632
43
. .
25.
Lemmey
HAL
,
Ye
X
,
Ding
HC
,
Triggle
CR
,
Garland
CJ
,
Dora
KA
.
Hyperglycaemia disrupts conducted vasodilation in the resistance vasculature of db/db mice
.
Vascul Pharmacol
.
2018
;
103–105
:
29
35
. .
26.
Flacco
N
,
Parés
J
,
Serna
E
,
Segura
V
,
Vicente
D
,
Pérez-Aso
M
, et al
α1D-Adrenoceptors are responsible for the high sensitivity and the slow time-course of noradrenaline-mediated contraction in conductance arteries
.
Pharmacol Res Perspect
.
2013
;
1
(
1
):
e00001
. .
27.
Weston
AH
,
Absi
M
,
Ward
DT
,
Ohanian
J
,
Dodd
RH
,
Dauban
P
, et al
Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231
.
Circ Res
.
2005
;
97
(
4
):
391
8
. .
28.
Pannirselvam
M
,
Ding
H
,
Anderson
TJ
,
Triggle
CR
.
Pharmacological characteristics of endothelium-derived hyperpolarizing factor-mediated relaxation of small mesenteric arteries from db/db mice
.
Eur J Pharmacol
.
2006
;
551
(
1–3
):
98
107
. .
29.
Frederick
NE
,
Mitchell
R
,
Hein
TW
,
Bagher
P
.
Morphological and pharmacological characterization of the porcine popliteal artery: a novel model for study of lower limb arterial disease
.
Microcirculation
.
2019
;
26
(
6
):
e12527
. .
30.
Mulvany
MJ
,
Halpern
W
.
Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats
.
Circ Res
.
1977
;
41
(
1
):
19
26
. .
31.
Arevalo-Leon
LE
,
Gallardo-Ortiz
IA
,
Urquiza-Marin
H
,
Villalobos-Molina
R
.
Evidence for the role of alpha1D- and alpha1A-adrenoceptors in contraction of the rat mesenteric artery
.
Vascul Pharmacol
.
2003
;
40
(
2
):
91
6
.
32.
Angus
JA
,
Wright
CE
.
ATP is not involved in α1-adrenoceptor-mediated vasoconstriction in resistance arteries
.
Eur J Pharmacol
.
2015
;
769
:
162
6
. .
33.
Braun
K
,
Rettinger
J
,
Ganso
M
,
Kassack
M
,
Hildebrandt
C
,
Ullmann
H
, et al
NF449: a subnanomolar potency antagonist at recombinant rat P2X1 receptors
.
Naunyn Schmiedebergs Arch Pharmacol
.
2001
;
364
(
3
):
285
90
. .
34.
Lamont
C
,
Vial
C
,
Evans
RJ
,
Wier
WG
.
P2X1 receptors mediate sympathetic postjunctional Ca2+ transients in mesenteric small arteries
.
Am J Physiol Heart Circ Physiol
.
2006
;
291
(
6
):
H3106
13
. .
35.
Li
LZ
,
Yue
LH
,
Zhang
ZM
,
Zhao
J
,
Ren
LM
,
Wang
HJ
, et al
Comparison of mRNA expression of P2X receptor subtypes in different arterial tissues of rats
.
Biochem Genet
.
2020 Oct
;
58
(
5
):
667
90
.
36.
Lewis
CJ
,
Evans
RJ
.
P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations
.
J Vasc Res
.
2001
;
38
(
4
):
332
40
. .
37.
Lewis
CJ
,
Evans
RJ
.
Comparison of P2X receptors in rat mesenteric, basilar and septal (coronary) arteries
.
J Auton Nerv Syst
.
2000
;
81
(
1–3
):
69
74
. .
38.
Rogers
LA
,
Atkinson
RA
,
Long
JP
.
Responses of isolated perfused arteries to catecholamines and nerve stimulation
.
Am J Physiol
.
1965
;
209
:
376
82
. .
39.
Boerman
EM
,
Segal
SS
.
Aging alters spontaneous and neurotransmitter-mediated Ca2+ signaling in smooth muscle cells of mouse mesenteric arteries
.
Microcirculation
.
2020 May
;
27
(
4
):
e12607
.
40.
Atkinson
J
,
Trescases
N
,
Benedek
C
,
Boillat
N
,
Fouda
AK
,
Krause
F
, et al
Alpha-1 and alpha-2 adrenoceptor agonists induce vasoconstriction of the normotensive rat caudal artery in vitro by stimulation of a heterogeneous population of alpha-1 adrenoceptors
.
Naunyn Schmiedebergs Arch Pharmacol
.
1988
;
338
(
5
):
529
35
. .
41.
Marwood
JF
,
Chapman
KL
,
Stokes
GS
.
Studies that question the existence of alpha-2 adrenoceptors in tail arteries of normotensive Sprague-Dawley rats
.
J Pharmacol Exp Ther
.
1986
;
238
(
1
):
267
72
..
42.
Alexander
SPH
,
Christopoulos
A
,
Davenport
AP
,
Kelly
E
,
Mathie
A
,
Peters
JA
, et al
The Concise Guide to Pharmacology 2019/20: G protein-coupled receptors
.
Br J Pharmacol
.
2019
;
176
(
Suppl 1
):
S21
141
. .
43.
Garland
CJ
,
Bagher
P
,
Powell
C
,
Ye
X
,
Lemmey
HAL
,
Borysova
L
, et al
Voltage-dependent Ca2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles
.
Sci Signal
.
2017
;
10
(
486
):
eaal3806
. .
44.
Biwer
LA
,
Askew-Page
HR
,
Hong
K
,
Milstein
J
,
Johnstone
SR
,
Macal
E
, et al
Endothelial calreticulin deletion impairs endothelial function in aged mice
.
Am J Physiol Heart Circ Physiol
.
2020
;
318
(
5
):
H1041
8
. .
45.
Civantos Calzada
B
,
Aleixandre de Artiñano
A
.
Alpha-adrenoceptor subtypes
.
Pharmacol Res
.
2001
;
44
(
3
):
195
208
. .
46.
McGillivray-Anderson
KM
,
Faber
JE
.
Effect of acidosis on contraction of microvascular smooth muscle by alpha 1- and alpha 2-adrenoceptors. Implications for neural and metabolic regulation
.
Circ Res
.
1990
;
66
(
6
):
1643
57
. .
47.
Martinez-Salas
SG
,
Campos-Peralta
JM
,
Pares-Hipolito
J
,
Gallardo-Ortiz
IA
,
Ibarra
M
,
Villalobos-Molina
R
.
Alpha1A-adrenoceptors predominate in the control of blood pressure in mouse mesenteric vascular bed
.
Auton Autacoid Pharmacol
.
2007
;
27
(
3
):
137
42
.
48.
Jackson
WF
,
Boerman
EM
,
Lange
EJ
,
Lundback
SS
,
Cohen
KD
.
Smooth muscle alpha1D-adrenoceptors mediate phenylephrine-induced vasoconstriction and increases in endothelial cell Ca2+ in hamster cremaster arterioles
.
Br J Pharmacol
.
2008
;
155
(
4
):
514
24
. .
49.
Dora
KA
,
Doyle
MP
,
Duling
BR
.
Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles
.
Proc Natl Acad Sci U S A
.
1997
;
94
(
12
):
6529
34
. .
50.
Burnstock
G
.
Do some nerve cells release more than one transmitter?
Neuroscience
.
1976
;
1
(
4
):
239
48
. .
51.
Esler
MD
,
Hasking
GJ
,
Willett
IR
,
Leonard
PW
,
Jennings
GL
.
Noradrenaline release and sympathetic nervous system activity
.
J Hypertens
.
1985
;
3
(
2
):
117
29
. .
52.
Dunn
WR
,
Brock
JA
,
Hardy
TA
.
Electrochemical and electrophysiological characterization of neurotransmitter release from sympathetic nerves supplying rat mesenteric arteries
.
Br J Pharmacol
.
1999
;
128
(
1
):
174
80
. .
53.
Tanaka
Y
,
Mochizuki
Y
,
Tanaka
H
,
Shigenobu
K
.
Significant role of neuronal non-N-type calcium channels in the sympathetic neurogenic contraction of rat mesenteric artery
.
Br J Pharmacol
.
1999
;
128
(
7
):
1602
8
. .
54.
McGregor
DD
.
The effect of sympathetic nerve stimulation of vasoconstrictor responses in perfused mesenteric blood vessels of the rat
.
J Physiol
.
1965
;
177
:
21
30
. .
55.
Wier
WG
,
Zang
WJ
,
Lamont
C
,
Raina
H
.
Sympathetic neurogenic Ca2+ signalling in rat arteries: ATP, noradrenaline and neuropeptide Y
.
Exp Physiol
.
2009
;
94
(
1
):
31
7
. .
56.
Donoso
MV
,
Steiner
M
,
Huidobro-Toro
JP
.
BIBP 3226, suramin and prazosin identify neuropeptide Y, adenosine 5′-triphosphate and noradrenaline as sympathetic cotransmitters in the rat arterial mesenteric bed
.
J Pharmacol Exp Ther
.
1997
;
282
(
2
):
691
8
..
57.
Sjoblom-Widfeldt
N
,
Gustafsson
H
,
Nilsson
H
.
Transmitter characteristics of small mesenteric arteries from the rat
.
Acta Physiol Scand
.
1990
;
138
(
2
):
203
12
.
58.
Furness
JB
,
Marshall
JM
.
Correlation of the directly observed responses of mesenteric vessles of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves
.
J Physiol
.
1974
;
239
(
1
):
75
88
. .
59.
Johansen
NJ
,
Tripovic
D
,
Brock
JA
.
Streptozotocin-induced diabetes differentially affects sympathetic innervation and control of plantar metatarsal and mesenteric arteries in the rat
.
Am J Physiol Heart Circ Physiol
.
2013
;
304
(
2
):
H215
28
. .
60.
Hsieh
NK
,
Liu
JC
,
Chen
HI
.
Localization of sympathetic postganglionic neurons innervating mesenteric artery and vein in rats
.
J Auton Nerv Syst
.
2000
;
80
(
1–2
):
1
7
. .
61.
Mangiarua
EI
,
Lee
RM
.
Increased sympathetic innervation in the cerebral and mesenteric arteries of hypertensive rats
.
Can J Physiol Pharmacol
.
1990
;
68
(
4
):
492
9
. .
62.
Stassen
FR
,
Maas
RG
,
Schiffers
PM
,
Janssen
GM
,
De Mey
JG
.
A positive and reversible relationship between adrenergic nerves and alpha-1A adrenoceptors in rat arteries
.
J Pharmacol Exp Ther
.
1998
;
284
(
1
):
399
405
..
63.
McGrath
JC
.
Localization of alpha-adrenoceptors: JR Vane Medal Lecture
.
Br J Pharmacol
.
2015
;
172
(
5
):
1179
94
.
64.
Zang
WJ
,
Zacharia
J
,
Lamont
C
,
Wier
WG
.
Sympathetically evoked Ca2+ signaling in arterial smooth muscle
.
Acta Pharmacol Sin
.
2006
;
27
(
12
):
1515
25
. .
65.
De Mey
JG
,
Megens
R
,
Fazzi
GE
.
Functional antagonism between endogenous neuropeptide Y and calcitonin gene-related peptide in mesenteric resistance arteries
.
J Pharmacol Exp Ther
.
2008
;
324
(
3
):
930
7
. .
66.
Gradin
KA
,
Buus
CL
,
Li
JY
,
Frøbert
O
,
Simonsen
U
.
Neuropeptide Y2 receptors are involved in enhanced neurogenic vasoconstriction in spontaneously hypertensive rats
.
Br J Pharmacol
.
2006
;
148
(
5
):
703
13
. .
67.
Gradin
KA
,
Li
JY
,
Andersson
O
,
Simonsen
U
.
Enhanced neuropeptide Y immunoreactivity and vasoconstriction in mesenteric small arteries from spontaneously hypertensive rats
.
J Vasc Res
.
2003
;
40
(
3
):
252
65
. .
68.
Andriantsitohaina
R
,
Stoclet
JC
.
Enhancement by neuropeptide Y (NPY) of the dihydropyridine-sensitive component of the response to alpha 1-adrenoceptor stimulation in rat isolated mesenteric arterioles
.
Br J Pharmacol
.
1990
;
99
(
2
):
389
95
. .
69.
Thorsell
A
,
Michalkiewicz
M
,
Dumont
Y
,
Quirion
R
,
Caberlotto
L
,
Rimondini
R
, et al
Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
23
):
12852
7
. .
70.
Michalkiewicz
M
,
Michalkiewicz
T
.
Developing transgenic neuropeptide Y rats
.
Methods Mol Biol
.
2000
;
153
:
73
89
. .
71.
Michalkiewicz
M
,
Michalkiewicz
T
,
Kreulen
DL
,
McDougall
SJ
.
Increased blood pressure responses in neuropeptide Y transgenic rats
.
Am J Physiol Regul Integr Comp Physiol
.
2001
;
281
(
2
):
R417
26
. .
72.
Shibata
K
,
Hirasawa
A
,
Foglar
R
,
Ogawa
S
,
Tsujimoto
G
.
Effects of quinidine and verapamil on human cardiovascular alpha1-adrenoceptors
.
Circulation
.
1998
;
97
(
13
):
1227
30
. .
73.
Amadesi
S
,
Varani
K
,
Spisani
L
,
Daniele
C
,
Turini
A
,
Agnello
G
, et al
Comparison of prazosin, terazosin and tamsulosin: functional and binding studies in isolated prostatic and vascular human tissues
.
Prostate
.
2001
;
47
(
4
):
231
8
. .
74.
Testa
R
,
Guarneri
L
,
Taddei
C
,
Poggesi
E
,
Angelico
P
,
Sartani
A
, et al
Functional antagonistic activity of Rec 15/2739, a novel alpha-1 antagonist selective for the lower urinary tract, on noradrenaline-induced contraction of human prostate and mesenteric artery
.
J Pharmacol Exp Ther
.
1996
;
277
(
3
):
1237
46
..
75.
Salcedo
A
,
Garijo
J
,
Monge
L
,
Fernández
N
,
García-Villalón
AL
,
Turrión
VS
, et al
Adrenergic response of splanchnic arteries from cirrhotic patients: role of nitric oxide, prostanoids, and reactive oxygen species
.
Exp Biol Med
.
2007
;
232
(
10
):
1360
7
. .
76.
Joyner
MJ
,
Wallin
BG
,
Charkoudian
N
.
Sex differences and blood pressure regulation in humans
.
Exp Physiol
.
2016
;
101
(
3
):
349
55
. .
77.
Burnstock
G
,
Ralevic
V
.
New insights into the local regulation of blood flow by perivascular nerves and endothelium
.
Br J Plast Surg
.
1994
;
47
(
8
):
527
43
. .
78.
Birch
D
,
Knight
GE
,
Boulos
PB
,
Burnstock
G
.
Analysis of innervation of human mesenteric vessels in non-inflamed and inflamed bowel: a confocal and functional study
.
Neurogastroenterol Motil
.
2008
;
20
(
6
):
660
70
. .
79.
Vila
JM
,
Medina
P
,
Segarra
G
,
Lluch
P
,
Pallardó
F
,
Flor
B
, et al
Relaxant effects of antidepressants on human isolated mesenteric arteries
.
Br J Clin Pharmacol
.
1999
;
48
(
2
):
223
9
. .
80.
Hadhazy
P
,
Nagy
L
,
Juhasz
F
,
Malomvolgyi
B
,
Magyar
K
.
Effects of indomethacin and prostaglandins I2 and E2 on the tone of human isolated mesenteric arteries
.
Eur J Pharmacol
.
1983
;
91
(
4
):
477
84
.
81.
Morgadinho
MT
,
Fontes Ribeiro
CA
,
Macedo
TRA
.
Electrical stimulation-induced release of dopamine and noradrenaline in human blood vessels
.
Bioelectrochem Bioenerg
.
1995
;
38
(
2
):
281
7
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.