Visual Abstract

In this study, using fluid-structure interaction (FSI), 3-dimensional blood flow in an aneurysm in the circle of Willis – which is located in the middle cerebral artery (MCA) – has been simulated. The purpose of this study is to evaluate the effect of a partly blocked vessel on an aneurysm. To achieve this purpose, two cases have been investigated using the FSI method: in the first case, an ideal geometry of aneurysm in the MCA has been simulated; in the second case, modeling is performed for an ideal geometry of the aneurysm in the MCA with a partly blocked vessel. All boundary conditions, properties and modeling methods were considered the same for both cases. The only difference between the two cases was that part of the MCA parent artery was blocked in the second case. In order to consider the hyperelastic property of the wall and the non-Newtonian properties of the blood, the Mooney-Rivlin model and the Carreau model have been used, respectively. In the second case, the Von Mises stress in the peak systole is 26% higher than in the first case. With regard to the high amount of Von Mises stress, the risk of rupture of the aneurysm is higher in this case. In the second case, the maximum wall shear stress (WSS) is 12% higher than in the first case. And maximum displacement in the second case is also higher than in the first. So, the risk of growth of the aneurysm is higher in cases with a partly blocked vessel.

1.
Gay
M
,
Zhang
L
.
Numerical studies on fluid–structure interactions of stent deployment and stented arteries
.
Eng Comput
.
2009
;
25
(
1
):
61
72
. 0264-4401
2.
van Gijn
J
,
Rinkel
GJ
.
Subarachnoid haemorrhage: diagnosis, causes and management
.
Brain
.
2001
Feb
;
124
(
Pt 2
):
249
78
.
[PubMed]
0006-8950
3.
Meng
H
,
Tutino
VM
,
Xiang
J
,
Siddiqui
A
.
High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis
.
AJNR Am J Neuroradiol
.
2014
Jul
;
35
(
7
):
1254
62
.
[PubMed]
0195-6108
4.
Sekhar
LN
,
Heros
RC
.
Origin, growth, and rupture of saccular aneurysms: a review
.
Neurosurgery
.
1981
Feb
;
8
(
2
):
248
60
.
[PubMed]
0148-396X
5.
Wu
J
,
Liu
G
,
Huang
W
,
Ghista
DN
,
Wong
KK
.
Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study
.
Comput Methods Biomech Biomed Engin
.
2015
;
18
(
16
):
1835
45
.
[PubMed]
1025-5842
6.
Ahmadi
S
,
Faridi
S
,
Tahmasebi
S
.
Calcium-dependent kinases in the brain have site-specific associations with locomotion and rearing impairments in rats with bile duct ligation
.
Behav Brain Res
.
2019
Oct
;
372
:
112009
.
[PubMed]
0166-4328
7.
Tang
D
,
Yang
C
,
Kobayashi
S
,
Ku
DN
.
Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models
.
J Biomech Eng
.
2004
Jun
;
126
(
3
):
363
70
.
[PubMed]
0148-0731
8.
Ricotta
JJ
,
Pagan
J
,
Xenos
M
,
Alemu
Y
,
Einav
S
,
Bluestein
D
.
Cardiovascular disease management: the need for better diagnostics
.
Med Biol Eng Comput
.
2008
Nov
;
46
(
11
):
1059
68
.
[PubMed]
0140-0118
9.
Hoi
Y
,
Meng
H
,
Woodward
SH
,
Bendok
BR
,
Hanel
RA
,
Guterman
LR
, et al
Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study
.
J Neurosurg
.
2004
Oct
;
101
(
4
):
676
81
.
[PubMed]
0022-3085
10.
Castro
MA
,
Putman
CM
,
Cebral
JR
.
Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics
.
AJNR Am J Neuroradiol
.
2006
Sep
;
27
(
8
):
1703
9
.
[PubMed]
0195-6108
11.
Sato
K
,
Imai
Y
,
Ishikawa
T
,
Matsuki
N
,
Yamaguchi
T
.
The importance of parent artery geometry in intra-aneurysmal hemodynamics
.
Med Eng Phys
.
2008
Jul
;
30
(
6
):
774
82
.
[PubMed]
1350-4533
12.
Kosierkiewicz
TA
,
Factor
SM
,
Dickson
DW
.
Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms
.
J Neuropathol Exp Neurol
.
1994
Jul
;
53
(
4
):
399
406
.
[PubMed]
0022-3069
13.
Killer-Oberpfalzer
M
,
Aichholzer
M
,
Weis
S
,
Richling
B
,
Jones
R
,
Virmani
R
, et al
Histological analysis of clipped human intracranial aneurysms and parent arteries with short-term follow-up
.
Cardiovasc Pathol
.
2012
Jul-Aug
;
21
(
4
):
299
306
.
[PubMed]
1054-8807
14.
Greenhalgh
RM
,
Laing
S
,
Taylor
GW
.
Risk factors in carotid artery stenosis and intracranial aneurysms
.
J Cardiovasc Surg (Torino)
.
1980
Sep-Oct
;
21
(
5
):
559
67
.
[PubMed]
0021-9509
15.
Adamson
J
,
Humphries
SE
,
Ostergaard
JR
,
Voldby
B
,
Richards
P
,
Powell
JT
.
Are cerebral aneurysms atherosclerotic?
Stroke
.
1994
May
;
25
(
5
):
963
6
.
[PubMed]
0039-2499
16.
Shamloo
A
,
Mohammadaliha
N
,
Mohseni
M
.
Integrative utilization of microenvironments, biomaterials and computational techniques for advanced tissue engineering
.
J Biotechnol
.
2015
Oct
;
212
:
71
89
.
[PubMed]
0168-1656
17.
Bazilevs
Y
,
Calo
VM
,
Zhang
Y
,
Hughes
TJ
.
Isogeometric fluid–structure interaction analysis with applications to arterial blood flow
.
Comput Mech
.
2006
;
38
(
4-5
):
310
22
. 0178-7675
18.
Torii
R
,
Oshima
M
,
Kobayashi
T
,
Takagi
K
,
Tezduyar
TE
.
Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes
.
Comput Methods Appl Mech Eng
.
2009
;
198
(
45-46
):
3613
21
. 0045-7825
19.
Long
Q
,
Xu
XY
,
Ariff
B
,
Thom
SA
,
Hughes
AD
,
Stanton
AV
.
Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study
.
J Magn Reson Imaging
.
2000
Mar
;
11
(
3
):
299
311
.
[PubMed]
1053-1807
20.
Fiorella
D
,
Woo
H
.
Method and apparatus for increasing blood flow through an obstructed blood vessel
.
Google Patents
;
2011
.
21.
Shamloo
A
,
Nejad
MA
,
Saeedi
M
.
Fluid-structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening
.
J Mech Behav Biomed Mater
.
2017
Oct
;
74
:
72
83
.
[PubMed]
1751-6161
22.
Shamloo
A
,
Mohammadaliha
N
,
Heilshorn
SC
,
Bauer
AL
.
A comparative study of collagen matrix density effect on endothelial sprout formation using experimental and computational approaches
.
Ann Biomed Eng
.
2016
Apr
;
44
(
4
):
929
41
.
[PubMed]
0090-6964
23.
Meng
H
,
Wang
Z
,
Hoi
Y
,
Gao
L
,
Metaxa
E
,
Swartz
DD
, et al
Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation
.
Stroke
.
2007
Jun
;
38
(
6
):
1924
31
.
[PubMed]
0039-2499
24.
Shojima
M
,
Oshima
M
,
Takagi
K
,
Torii
R
,
Hayakawa
M
,
Katada
K
, et al
Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms
.
Stroke
.
2004
Nov
;
35
(
11
):
2500
5
.
[PubMed]
0039-2499
25.
Nakatani
H
,
Hashimoto
N
,
Kang
Y
,
Yamazoe
N
,
Kikuchi
H
,
Yamaguchi
S
, et al
Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats
.
J Neurosurg
.
1991
Feb
;
74
(
2
):
258
62
.
[PubMed]
0022-3085
26.
Fukuda
S
,
Hashimoto
N
,
Naritomi
H
,
Nagata
I
,
Nozaki
K
,
Kondo
S
, et al
Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase
.
Circulation
.
2000
May
;
101
(
21
):
2532
8
.
[PubMed]
0009-7322
27.
ARANDA
.
A. and A. VALENCIA, COMPUTATIONAL STUDY ON THE RUPTURE RISK IN REAL CEREBRAL ANEURYSMS WITH GEOMETRICAL AND FLUID-MECHANICAL PARAMETERS USING FSI SIMULATIONS AND MACHINE LEARNING ALGORITHMS
.
J Mech Med Biol
.
2019
;
•••
:
1950014
.0219-5194
28.
Qiu
TL
,
Jin
GL
,
Bao
WQ
,
Lu
HT
.
Morphological Effect on Wall Shear Stress in Intracranial Aneurysms
.
J Neurol Surg A Cent Eur Neurosurg
.
2018
Mar
;
79
(
2
):
108
15
.
[PubMed]
2193-6315
29.
Wang
Y
,
Leng
X
,
Zhou
X
,
Li
W
,
Siddiqui
AH
,
Xiang
J
.
Hemodynamics in a middle cerebral artery aneurysm before its growth and fatal rupture: case study and review of the literature
.
World Neurosurg
.
2018
Nov
;
119
:
e395
402
.
[PubMed]
1878-8750
30.
Razaghi
R
,
Biglari
H
,
Karimi
A
.
Risk of rupture of the cerebral aneurysm in relation to traumatic brain injury using a patient-specific fluid-structure interaction model
.
Comput Methods Programs Biomed
.
2019
Jul
;
176
:
9
16
.
[PubMed]
0169-2607
31.
Torii
R
,
Oshima
M
,
Kobayashi
T
,
Takagi
K
,
Tezduyar
TE
.
Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling
.
Comput Mech
.
2008
;
43
(
1
):
151
9
. 0178-7675
32.
Malvè
M
,
García
A
,
Ohayon
J
,
Martínez
MA
.
Unsteady blood flow and mass transfer of a human left coronary artery bifurcation: FSI vs. CFD
.
Int Commun Heat Mass Transf
.
2012
;
39
(
6
):
745
51
. 0735-1933
33.
Shamloo
A
,
Manuchehrfar
F
,
Rafii-Tabar
H
.
A viscoelastic model for axonal microtubule rupture
.
J Biomech
.
2015
May
;
48
(
7
):
1241
7
.
[PubMed]
0021-9290
34.
Hamdan
MO
, et al
CFD Investigation of the Effect of Cerebral Aneurysms Size on Wall Stresses and Strain. in 2019 Advances in Science and Engineering Technology International Conferences (ASET).
2019
. IEEE.
35.
Kaku
,
Y.
, et al
,
Treatment of cerebral aneurysms: surgical clipping and coil embolization.
Interventional Neuroradiology,
2007
. 13(1_suppl): p. 68-72.
36.
Lee
CJ
,
Zhang
Y
,
Takao
H
,
Murayama
Y
,
Qian
Y
.
A fluid-structure interaction study using patient-specific ruptured and unruptured aneurysm: the effect of aneurysm morphology, hypertension and elasticity
.
J Biomech
.
2013
Sep
;
46
(
14
):
2402
10
.
[PubMed]
0021-9290
37.
Jeong
,
W.
and
K.
Rhee
,
Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment.
Computational and mathematical methods in medicine, 2012.
2012
.
38.
Babiker
MH
,
Chong
B
,
Gonzalez
LF
,
Cheema
S
,
Frakes
DH
.
Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics
.
J Biomech
.
2013
Nov
;
46
(
16
):
2809
16
.
[PubMed]
0021-9290
39.
Tsang
AC
,
Yiu
BY
,
Tang
AY
,
Chung
WC
,
Leung
GK
,
Poon
AK
, et al
The effect of downstream resistance on flow diverter treatment of a cerebral aneurysm at a bifurcation: A joint computational-experimental study
.
J Hydrodynam
.
2018
;
30
(
5
):
803
14
. 1001-6058
40.
Tang
D
,
Yang
C
,
Zheng
J
,
Woodard
PK
,
Sicard
GA
,
Saffitz
JE
, et al
3D MRI-based multicomponent FSI models for atherosclerotic plaques
.
Ann Biomed Eng
.
2004
Jul
;
32
(
7
):
947
60
.
[PubMed]
0090-6964
41.
Ivanov
D
,
Dol
A
,
Pavlova
O
,
Aristambekova
A
.
Modeling of human circle of Willis with and without aneurisms
.
Acta Bioeng Biomech
.
2014
;
16
(
2
):
121
9
.
[PubMed]
1509-409X
42.
Campo-Deaño
L
,
Oliveira
MS
,
Pinho
FT
.
A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow
.
Appl Mech Rev
.
2015
;
67
(
3
):
030801
. 0003-6900
43.
Torii
R
,
Oshima
M
,
Kobayashi
T
,
Takagi
K
,
Tezduyar
TE
.
Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms
.
Int J Numer Methods Biomed Eng
.
2010
;
26
(
3‐4
):
336
47
. 2040-7939
44.
Thurston
GB
.
Rheological parameters for the viscosity viscoelasticity and thixotropy of blood
.
Biorheology
.
1979
;
16
(
3
):
149
62
.
[PubMed]
0006-355X
45.
Walker
AM
,
Johnston
CR
,
Rival
DE
.
On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis
.
Ann Biomed Eng
.
2014
Jan
;
42
(
1
):
97
109
.
[PubMed]
0090-6964
46.
Valencia
A
,
Zarate
A
,
Galvez
M
,
Badilla
L
.
Non‐Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm
.
Int J Numer Methods Fluids
.
2006
;
50
(
6
):
751
64
. 0271-2091
47.
Cho
YI
,
Kensey
KR
.
Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows
.
Biorheology
.
1991
;
28
(
3-4
):
241
62
.
[PubMed]
0006-355X
48.
Mills
CJ
,
Gabe
IT
,
Gault
JH
,
Mason
DT
,
Ross
J
 Jr
,
Braunwald
E
, et al
Pressure-flow relationships and vascular impedance in man
.
Cardiovasc Res
.
1970
Oct
;
4
(
4
):
405
17
.
[PubMed]
0008-6363
49.
Zulliger
MA
,
Fridez
P
,
Hayashi
K
,
Stergiopulos
N
.
A strain energy function for arteries accounting for wall composition and structure
.
J Biomech
.
2004
Jul
;
37
(
7
):
989
1000
.
[PubMed]
0021-9290
50.
Gasser
TC
,
Ogden
RW
,
Holzapfel
GA
.
Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
.
J R Soc Interface
.
2006
Feb
;
3
(
6
):
15
35
.
[PubMed]
1742-5689
51.
Lally
C
,
Dolan
F
,
Prendergast
PJ
.
Cardiovascular stent design and vessel stresses: a finite element analysis
.
J Biomech
.
2005
Aug
;
38
(
8
):
1574
81
.
[PubMed]
0021-9290
52.
Doost
SN
,
Ghista
D
,
Su
B
,
Zhong
L
,
Morsi
YS
.
Heart blood flow simulation: a perspective review
.
Biomed Eng Online
.
2016
Aug
;
15
(
1
):
101
.
[PubMed]
1475-925X
53.
Xiang
J
,
Natarajan
SK
,
Tremmel
M
,
Ma
D
,
Mocco
J
,
Hopkins
LN
, et al
Hemodynamic-morphologic discriminants for intracranial aneurysm rupture
.
Stroke
.
2011
Jan
;
42
(
1
):
144
52
.
[PubMed]
0039-2499
54.
Ujiie
H
,
Tachibana
H
,
Hiramatsu
O
,
Hazel
AL
,
Matsumoto
T
,
Ogasawara
Y
, et al
Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms
.
Neurosurgery
.
1999
Jul
;
45
(
1
):
119
29
.
[PubMed]
0148-396X
55.
Biasetti
J
,
Gasser
TC
,
Auer
M
,
Hedin
U
,
Labruto
F
.
Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism
.
Ann Biomed Eng
.
2010
Feb
;
38
(
2
):
380
90
.
[PubMed]
0090-6964
56.
Hoi
Y
,
Woodward
SH
,
Kim
M
,
Taulbee
DB
,
Meng
H
.
Validation of CFD simulations of cerebral aneurysms with implication of geometric variations
.
J Biomech Eng
.
2006
Dec
;
128
(
6
):
844
51
.
[PubMed]
0148-0731
57.
Lu
R
,
Turco
RP
,
Jacobson
MZ
.
An integrated air pollution modeling system for urban and regional scales: 1. Structure and performance
.
J Geophys Res D Atmospheres
.
1997
;
102
D5
:
6063
79
. 0747-7309
58.
Rossitti
S
,
Svendsen
P
.
Shear stress in cerebral arteries supplying arteriovenous malformations
.
Acta Neurochir (Wien)
.
1995
;
137
(
3-4
):
138
45
.
[PubMed]
0001-6268
59.
Cheng
C
,
Helderman
F
,
Tempel
D
,
Segers
D
,
Hierck
B
,
Poelmann
R
, et al
Large variations in absolute wall shear stress levels within one species and between species
.
Atherosclerosis
.
2007
Dec
;
195
(
2
):
225
35
.
[PubMed]
0021-9150
60.
Yagi
T
,
Sato
A
,
Shinke
M
,
Takahashi
S
,
Tobe
Y
,
Takao
H
, et al
Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: transition from a laminar regime
.
J R Soc Interface
.
2013
Feb
;
10
(
82
):
20121031
.
[PubMed]
1742-5689
61.
Malek
AM
,
Alper
SL
,
Izumo
S
.
Hemodynamic shear stress and its role in atherosclerosis
.
JAMA
.
1999
Dec
;
282
(
21
):
2035
42
.
[PubMed]
0098-7484
62.
Isaksen
JG
,
Bazilevs
Y
,
Kvamsdal
T
,
Zhang
Y
,
Kaspersen
JH
,
Waterloo
K
, et al
Determination of wall tension in cerebral artery aneurysms by numerical simulation
.
Stroke
.
2008
Dec
;
39
(
12
):
3172
8
.
[PubMed]
0039-2499
63.
MacDonald
DJ
,
Finlay
HM
,
Canham
PB
.
Directional wall strength in saccular brain aneurysms from polarized light microscopy
.
Ann Biomed Eng
.
2000
May
;
28
(
5
):
533
42
.
[PubMed]
0090-6964
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.