Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.

1.
Kolodgie FD, Narula J, Yuan C, Burke AP, Finn AV, Virmani R: Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J Am Coll Cardiol 2007;49:2093-2101.
[PubMed]
2.
Yla-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PW, Waltenberger J, Weber C, Tokgozoglu L: Stabilisation of atherosclerotic plaques: position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 2011;106:1-19.
[PubMed]
3.
Libby P, Ridker PM, Hansson GK: Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317-325.
[PubMed]
4.
Weber C, Noels H: Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011;17:1410-1422.
[PubMed]
5.
Johnson JL, Newby AC: Macrophage heterogeneity in atherosclerotic plaques. Curr Opin Lipidol 2009;20:370-378.
[PubMed]
6.
Ley K, Miller YI, Hedrick CC: Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 2011;31:1506-1516.
[PubMed]
7.
Ponnuswamy P, Van Vre EA, Mallat Z, Tedgui A: Humoral and cellular immune responses in atherosclerosis: spotlight on B- and T-cells. Vascul Pharmacol 2012;56:193-203.
[PubMed]
8.
Serruys PW, Luijten HE, Beatt KJ, Geuskens R, de Feyter PJ, van den Brand M, Reiber JH, ten Katen HJ, van Es GA, Hugenholtz PG: Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon - a quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 1988;77:361-371.
[PubMed]
9.
Sohl G, Willecke K: Gap junctions and the connexin protein family. Cardiovasc Res 2004;62:228-232.
[PubMed]
10.
Kumar NM, Gilula NB: The gap junction communication channel. Cell 1996;84:381-388.
[PubMed]
11.
Sohl G, Willecke K: An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 2003;10:173-180.
[PubMed]
12.
Martin PE, Evans WH: Incorporation of connexins into plasma membranes and gap junctions. Cardiovasc Res 2004;62:378-387.
[PubMed]
13.
Laird DW: Life cycle of connexins in health and disease. Biochem J 2006;394:527-543.
[PubMed]
14.
Solan JL, Lampe PD: Connexin43 phosphorylation: structural changes and biological effects. Biochem J 2009;419:261-272.
[PubMed]
15.
Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC: Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003;83:1359-1400.
[PubMed]
16.
Herve JC, Derangeon M, Sarrouilhe D, Giepmans BN, Bourmeyster N: Gap junctional channels are parts of multiprotein complexes. Biochim Biophys Acta 2012;1818:1844-1865.
[PubMed]
17.
Palatinus JA, Rhett JM, Gourdie RG: The connexin43 carboxyl terminus and cardiac gap junction organization. Biochim Biophys Acta 2012;1818:1831-1843.
[PubMed]
18.
Marquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD: Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. Biochim Biophys Acta 2012;1818:1985-1992.
[PubMed]
19.
Duffy HS, Delmar M, Spray DC: Formation of the gap junction nexus: binding partners for connexins. J Physiol Paris 2002;96:243-249.
[PubMed]
20.
Evans WH, Martin PE: Gap junctions: structure and function (review). Mol Membr Biol 2002;19:121-136.
[PubMed]
21.
Goodenough DA, Paul DL: Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 2003;4:285-294.
[PubMed]
22.
Herve JC, Derangeon M: Gap-junction-mediated cell-to-cell communication. Cell Tissue Res 2013;352:21-31.
[PubMed]
23.
Decrock E, Vinken M, De Vuyst E, Krysko DV, D'Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L: Connexin-related signaling in cell death: to live or let die? Cell Death Differ 2009;16:524-536.
[PubMed]
24.
John S, Cesario D, Weiss JN: Gap junctional hemichannels in the heart. Acta Physiol Scand 2003;179:23-31.
[PubMed]
25.
Derouette JP, Desplantez T, Wong CW, Roth I, Kwak BR, Weingart R: Functional differences between human Cx37 polymorphic hemichannels. J Mol Cell Cardiol 2009;46:499-507.
[PubMed]
26.
Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV: Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 2005;1711:215-224.
[PubMed]
27.
Goodenough DA, Paul DL: Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 2003;4:285-294.
[PubMed]
28.
Saez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV: Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 2010;316:2377-2389.
[PubMed]
29.
Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR: Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 2006;12:950-954.
[PubMed]
30.
Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F: ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 2008;105:18770-18775.
[PubMed]
31.
Robertson J, Lang S, Lambert PA, Martin PE: Peptidoglycan derived from Staphylococcus epidermidis induces connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells. Biochem J 2010;432:133-143.
[PubMed]
32.
Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR: Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 2003;23:3588-3596.
[PubMed]
33.
Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R: Hemichannel-mediated inhibition in the outer retina. Science 2001;292:1178-1180.
[PubMed]
34.
Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P: Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995;15:961-973.
[PubMed]
35.
Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX: Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 2005;16:3100-3106.
[PubMed]
36.
De Flora A, Zocchi E, Guida L, Franco L, Bruzzone S: Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann NY Acad Sci 2004;1028:176-191.
[PubMed]
37.
Wang DG, Zhang FX, Chen ML, Zhu HJ, Yang B, Cao KJ: Cx43 in mesenchymal stem cells promotes angiogenesis of the infarcted heart independent of gap junctions. Mol Med Rep 2014;9:1095-1102.
38.
Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, and Heusch G. No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol Heart Circ Physiol 2002; 283: H1740-H1742.
[PubMed]
39.
Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D: Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc Res 2008;77:325-333.
[PubMed]
40.
Goubaeva F, Mikami M, Giardina S, Ding B, Abe J, Yang J: Cardiac mitochondrial connexin 43 regulates apoptosis. Biochem Biophys Res Commun 2007;352:97-103.
[PubMed]
41.
Zhou JZ, Jiang JX: Gap junction and hemichannel-independent actions of connexins on cell and tissue functions - an update. FEBS Lett 2014, Epub ahead of print.
42.
Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK: Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci USA 2009;106:3567-3572.
[PubMed]
43.
Xu X, Francis R, Wei CJ, Linask KL, Lo CW: Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 2006;133:3629-3639.
[PubMed]
44.
Homkajorn B, Sims NR, Muyderman H: Connexin 43 regulates astrocytic migration and proliferation in response to injury. Neurosci Lett 2010;486:197-201.
[PubMed]
45.
Qin H, Shao Q, Thomas T, Kalra J, Alaoui-Jamali MA, Laird DW: Connexin26 regulates the expression of angiogenesis-related genes in human breast tumor cells by both GJIC-dependent and -independent mechanisms. Cell Commun Adhes 2003;10:387-393.
[PubMed]
46.
Zhang W, Nwagwu C, Le DM, Yong VW, Song H, Couldwell WT: Increased invasive capacity of connexin43-overexpressing malignant glioma cells. J Neurosurg 2003;99:1039-1046.
[PubMed]
47.
Johnstone SR, Best AK, Wright CS, Isakson BE, Errington RJ, Martin PE: Enhanced connexin 43 expression delays intra-mitotic duration and cell cycle traverse independently of gap junction channel function. J Cell Biochem 2010;110:772-782.
[PubMed]
48.
Gellhaus A, Wotzlaw C, Otto T, Fandrey J, Winterhager E: More insights into the CCN3/connexin43 interaction complex and its role for signaling. J Cell Biochem 2010;110:129-140.
[PubMed]
49.
Behrens J, Kameritsch P, Wallner S, Pohl U, Pogoda K: The carboxyl tail of Cx43 augments p38 mediated cell migration in a gap junction-independent manner. Eur J Cell Biol 2010;89:828-838.
[PubMed]
50.
Laird DW: The gap junction proteome and its relationship to disease. Trends Cell Biol 2010;20:92-101.
[PubMed]
51.
Kameritsch P, Pogoda K, Pohl U: Channel-independent influence of connexin 43 on cell migration. Biochim Biophys Acta 2012;1818:1993-2001.
[PubMed]
52.
Crespin S, Bechberger J, Mesnil M, Naus CC, Sin WC: The carboxy-terminal tail of connexin43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells. J Cell Biochem 2010;110:589-597.
[PubMed]
53.
Dai P, Nakagami T, Tanaka H, Hitomi T, Takamatsu T: Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol Biol Cell 2007;18:2264-2273.
[PubMed]
54.
Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL: Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res 1998;58:5089-5096.
[PubMed]
55.
Walker DL, Vacha SJ, Kirby ML, Lo CW: Connexin43 deficiency causes dysregulation of coronary vasculogenesis. Dev Biol 2005;284:479-498.
[PubMed]
56.
Kanczuga-Koda L, Sulkowski S, Koda M, Skrzydlewska E, Sulkowska M: Connexin 26 correlates with Bcl-xL and Bax proteins expression in colorectal cancer. World J Gastroenterol 2005;11:1544-1548.
[PubMed]
57.
de Wit C, Hoepfl B, Wolfle SE: Endothelial mediators and communication through vascular gap junctions. Biol Chem 2006;387:3-9.
[PubMed]
58.
Sandow SL, Looft-Wilson R, Doran B, Grayson TH, Segal SS, Hill CE: Expression of homocellular and heterocellular gap junctions in hamster arterioles and feed arteries. Cardiovasc Res 2003;60:643-653.
[PubMed]
59.
Looft-Wilson RC, Payne GW, Segal SS: Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J Appl Physiol (1985) 2004;97:1152-1158.
60.
Kruger O, Plum A, Kim JS, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K: Defective vascular development in connexin 45-deficient mice. Development 2000;127:4179-4193.
[PubMed]
61.
Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J: Cardiac malformation in neonatal mice lacking connexin43. Science 1995;267:1831-1834.
[PubMed]
62.
de Wit C, Roos F, Bolz SS, Pohl U: Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 2003;13:169-177.
[PubMed]
63.
Simon AM, Goodenough DA, Paul DL: Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 1998;8:295-298.
[PubMed]
64.
Kirchhoff S, Nelles E, Hagendorff A, Kruger O, Traub O, Willecke K: Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol 1998;8:299-302.
[PubMed]
65.
Simon AM, McWhorter AR: Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 2002;251:206-220.
[PubMed]
66.
de Wit C, Griffith TM: Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflügers Arch 2010;459:897-914.
67.
Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, Hill CE: Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 2006;291:H2047-H2056.
[PubMed]
68.
Chaytor AT, Marsh WL, Hutcheson IR, Griffith TM: Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions. Endothelium 2000;7:265-278.
[PubMed]
69.
Chaytor AT, Martin PE, Edwards DH, Griffith TM: Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol Heart Circ Physiol 2001;280:H2441-H2450.
[PubMed]
70.
Chaytor AT, Bakker LM, Edwards DH, Griffith TM: Connexin-mimetic peptides dissociate electrotonic EDHF-type signalling via myoendothelial and smooth muscle gap junctions in the rabbit iliac artery. Br J Pharmacol 2005;144:108-114.
[PubMed]
71.
Mather S, Dora KA, Sandow SL, Winter P, Garland CJ: Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 2005;97:399-407.
[PubMed]
72.
de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U: Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res 2000;86:649-655.
[PubMed]
73.
Figueroa XF, Paul DL, Simon AM, Goodenough DA, Day KH, Damon DN, Duling BR: Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Circ Res 2003;92:793-800.
[PubMed]
74.
Wolfle SE, Schmidt VJ, Hoepfl B, Gebert A, Alcolea S, Gros D, de Wit C: Connexin45 cannot replace the function of connexin40 in conducting endothelium-dependent dilations along arterioles. Circ Res 2007;101:1292-1299.
[PubMed]
75.
Figueroa XF, Duling BR: Dissection of two Cx37-independent conducted vasodilator mechanisms by deletion of Cx40: electrotonic versus regenerative conduction. Am J Physiol Heart Circ Physiol 2008;295:H2001-H2007.
[PubMed]
76.
Gabriels JE, Paul DL: Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 1998;83:636-643.
[PubMed]
77.
Pfenniger A, Wong C, Sutter E, Cuhlmann S, Dunoyer-Geindre S, Mach F, Horrevoets AJ, Evans PC, Krams R, Kwak BR: Shear stress modulates the expression of the atheroprotective protein Cx37 in endothelial cells. J Mol Cell Cardiol 2012;53:299-309.
[PubMed]
78.
Davies PF, Civelek M: Endoplasmic reticulum stress, redox, and a proinflammatory environment in athero-susceptible endothelium in vivo at sites of complex hemodynamic shear stress. Antioxid Redox Signal 2011;15:1427-1432.
[PubMed]
79.
Chadjichristos CE, Scheckenbach KE, van Veen TA, Richani Sarieddine MZ, de Wit C, Yang Z, Roth I, Bacchetta M, Viswambharan H, Foglia B, Dudez T, van Kempen MJ, Coenjaerts FE, Miquerol L, Deutsch U, Jongsma HJ, Chanson M, Kwak BR: Endothelial-specific deletion of connexin40 promotes atherosclerosis by increasing CD73-dependent leukocyte adhesion. Circulation 2010;121:123-131.
[PubMed]
80.
Kwak BR, Veillard N, Pelli G, Mulhaupt F, James RW, Chanson M, Mach F: Reduced connexin43 expression inhibits atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Circulation 2003;107:1033-1039.
[PubMed]
81.
Ross R: Cell biology of atherosclerosis. Annu Rev Physiol 1995;57:791-804.
[PubMed]
82.
Meens MJ, Pfenniger A, Kwak BR, Delmar M: Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res 2013;99:304-314.
[PubMed]
83.
Yang Z, Ming XF: Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res 2006;4:53-65.
[PubMed]
84.
Pfenniger A, Derouette JP, Verma V, Lin X, Foglia B, Coombs W, Roth I, Satta N, Dunoyer-Geindre S, Sorgen P, Taffet S, Kwak BR, Delmar M: Gap junction protein Cx37 interacts with endothelial nitric oxide synthase in endothelial cells. Arterioscler Thromb Vasc Biol 2010;30:827-834.
[PubMed]
85.
Alonso F, Boittin FX, Beny JL, Haefliger JA: Loss of connexin40 is associated with decreased endothelium-dependent relaxations and eNOS levels in the mouse aorta. Am J Physiol Heart Circ Physiol 2010;299:H1365-H1373.
[PubMed]
86.
Libby P, Ridker PM, Hansson GK: Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009;54:2129-2138.
[PubMed]
87.
van Leeuwen M, Gijbels MJ, Duijvestijn A, Smook M, van de Gaar MJ, Heeringa P, de Winther MP, Tervaert JW: Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/- mice. Arterioscler Thromb Vasc Biol 2008;28:84-89.
[PubMed]
88.
Eugenin EA, Branes MC, Berman JW, Saez JC: TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 2003;170:1320-1328.
[PubMed]
89.
Leybaert L, Braet K, Vandamme W, Cabooter L, Martin PE, Evans WH: Connexin channels, connexin mimetic peptides and ATP release. Cell Commun Adhes 2003;10:251-257.
[PubMed]
90.
Yuan D, Wang Q, Wu D, Yu M, Zhang S, Li L, Tao L, Harris AL: Monocyte-endothelial adhesion is modulated by Cx43-stimulated ATP release from monocytes. Biochem Biophys Res Commun 2012;420:536-541.
[PubMed]
91.
Mendoza-Naranjo A, Bouma G, Pereda C, Ramirez M, Webb KF, Tittarelli A, Lopez MN, Kalergis AM, Thrasher AJ, Becker DL, Salazar-Onfray F: Functional gap junctions accumulate at the immunological synapse and contribute to T cell activation. J Immunol 2011;187:3121-3132.
[PubMed]
92.
Branes MC, Contreras JE, Saez JC: Activation of human polymorphonuclear cells induces formation of functional gap junctions and expression of connexins. Med Sci Monit 2002;8:BR313-BR323.
93.
Zahler S, Hoffmann A, Gloe T, Pohl U: Gap-junctional coupling between neutrophils and endothelial cells: a novel modulator of transendothelial migration. J Leukoc Biol 2003;73:118-126.
[PubMed]
94.
Jara PI, Boric MP, Saez JC: Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to form gap junctions with endothelial cells after ischemia-reperfusion. Proc Natl Acad Sci USA 1995;92:7011-7015.
[PubMed]
95.
Sarieddine MZ, Scheckenbach KE, Foglia B, Maass K, Garcia I, Kwak BR, Chanson M: Connexin43 modulates neutrophil recruitment to the lung. J Cell Mol Med 2009;13:4560-4570.
[PubMed]
96.
Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP: ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 2006;99:1100-1108.
[PubMed]
97.
Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F: Altered pattern of vascular connexin expression in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2002;22:225-230.
[PubMed]
98.
van Rijen HV, van Kempen MJ, Postma S, Jongsma HJ: Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine 1998;10:258-264.
[PubMed]
99.
Zernecke A, Bidzhekov K, Ozuyaman B, Fraemohs L, Liehn EA, Luscher-Firzlaff JM, Luscher B, Schrader J, Weber C: CD73/ecto-5′-nucleotidase protects against vascular inflammation and neointima formation. Circulation 2006;113:2120-2127.
[PubMed]
100.
Blackburn JP, Peters NS, Yeh HI, Rothery S, Green CR, Severs NJ: Upregulation of connexin43 gap junctions during early stages of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1995;15:1219-1228.
[PubMed]
101.
Arishiro K, Hoshiga M, Ishihara T, Kondo K, Hanafusa T: Connexin 43 expression is associated with vascular activation in human radial artery. Int J Cardiol 2010;145:270-272.
[PubMed]
102.
Rennick RE, Connat JL, Burnstock G, Rothery S, Severs NJ, Green CR: Expression of connexin43 gap junctions between cultured vascular smooth muscle cells is dependent upon phenotype. Cell Tissue Res 1993;271:323-332.
[PubMed]
103.
Chadjichristos CE, Morel S, Derouette JP, Sutter E, Roth I, Brisset AC, Bochaton-Piallat ML, Kwak BR: Targeting connexin 43 prevents platelet-derived growth factor-BB-induced phenotypic change in porcine coronary artery smooth muscle cells. Circ Res 2008;102:653-660.
[PubMed]
104.
Johnstone S, Isakson B, Locke D: Biological and biophysical properties of vascular connexin channels. Int Rev Cell Mol Biol 2009;278:69-118.
[PubMed]
105.
Rama A, Matsushita T, Charolidi N, Rothery S, Dupont E, Severs NJ: Up-regulation of connexin43 correlates with increased synthetic activity and enhanced contractile differentiation in TGF-beta-treated human aortic smooth muscle cells. Eur J Cell Biol 2006;85:375-386.
[PubMed]
106.
Derouette JP, Wong C, Burnier L, Morel S, Sutter E, Galan K, Brisset AC, Roth I, Chadjichristos CE, Kwak BR: Molecular role of Cx37 in advanced atherosclerosis: a micro-array study. Atherosclerosis 2009;206:69-76.
[PubMed]
107.
Polacek D, Lal R, Volin MV, Davies PF: Gap junctional communication between vascular cells: induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions. Am J Pathol 1993;142:593-606.
[PubMed]
108.
Morel S, Sutter E, Roth I, Foglia B, Deutsch U, Theis M, Kwak BR: Endothelial-specific deletion of the gap junction proteinconnexin43 reduces atherosclerosis in mice. Circulation 2008;118:S473.
109.
Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262-1275.
[PubMed]
110.
Libby P: Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J Lipid Res 2009;50(suppl):S352-S357.
[PubMed]
111.
Angelillo-Scherrer A, Fontana P, Burnier L, Roth I, Sugamele R, Brisset A, Morel S, Nolli S, Sutter E, Chassot A, Capron C, Borgel D, Saller F, Chanson M, Kwak BR: Connexin 37 limits thrombus propensity by downregulating platelet reactivity. Circulation 2011;124:930-939.
[PubMed]
112.
Vaiyapuri S, Moraes LA, Sage T, Ali MS, Lewis KR, Mahaut-Smith MP, Oviedo-Orta E, Simon AM, Gibbins JM: Connexin40 regulates platelet function. Nat Commun 2013;4:2564.
[PubMed]
113.
Vaiyapuri S, Jones CI, Sasikumar P, Moraes LA, Munger SJ, Wright JR, Ali MS, Sage T, Kaiser WJ, Tucker KL, Stain CJ, Bye AP, Jones S, Oviedo-Orta E, Simon AM, Mahaut-Smith MP, Gibbins JM: Gap junctions and connexin hemichannels underpin hemostasis and thrombosis. Circulation 2012;125:2479-2491.
[PubMed]
114.
Dangas G, Kuepper F: Cardiology patient page. Restenosis: repeat narrowing of a coronary artery - prevention and treatment. Circulation 2002;105:2586-2587.
[PubMed]
115.
Newsome LT, Kutcher MA, Royster RL: Coronary artery stents. 1. Evolution of percutaneous coronary intervention. Anesth Analg 2008;107:552-569.
[PubMed]
116.
Matter CM, Ma L, von Lukowicz T, Meier P, Lohmann C, Zhang D, Kilic U, Hofmann E, Ha SW, Hersberger M, Hermann DM, Luscher TF: Increased balloon-induced inflammation, proliferation, and neointima formation in apolipoprotein E (ApoE) knockout mice. Stroke 2006;37:2625-2632.
[PubMed]
117.
Chadjichristos CE, Matter CM, Roth I, Sutter E, Pelli G, Luscher TF, Chanson M, Kwak BR: Reduced connexin43 expression limits neointima formation after balloon distension injury in hypercholesterolemic mice. Circulation 2006;113:2835-2843.
[PubMed]
118.
Yeh HI, Lupu F, Dupont E, Severs NJ: Upregulation of connexin43 gap junctions between smooth muscle cells after balloon catheter injury in the rat carotid artery. Arterioscler Thromb Vasc Biol 1997;17:3174-3184.
[PubMed]
119.
Bochaton-Piallat ML, Ropraz P, Gabbiani F, Gabbiani G: Phenotypic heterogeneity of rat arterial smooth muscle cell clones: implications for the development of experimental intimal thickening. Arterioscler Thromb Vasc Biol 1996;16:815-820.
[PubMed]
120.
Hao H, Ropraz P, Verin V, Camenzind E, Geinoz A, Pepper MS, Gabbiani G, Bochaton-Piallat ML: Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Arterioscler Thromb Vasc Biol 2002;22:1093-1099.
[PubMed]
121.
Song M, Yu X, Cui X, Zhu G, Zhao G, Chen J, Huang L: Blockade of connexin 43 hemichannels reduces neointima formation after vascular injury by inhibiting proliferation and phenotypic modulation of smooth muscle cells. Exp Biol Med (Maywood) 2009;234:1192-1200.
[PubMed]
122.
Liao Y, Regan CP, Manabe I, Owens GK, Day KH, Damon DN, Duling BR: Smooth muscle-targeted knockout of connexin43 enhances neointimal formation in response to vascular injury. Arterioscler Thromb Vasc Biol 2007;27:1037-1042.
[PubMed]
123.
Wang L, Chen J, Sun Y, Zhang F, Zhu J, Hu S, Wang DH: Regulation of connexin expression after balloon injury: possible mechanisms for antiproliferative effect of statins. Am J Hypertens 2005;18:1146-1153.
[PubMed]
124.
Li DQ, Chen WX, Zhou YP, Han Y: Effect of ramipril on the regulation of the expression of connexins 40 and 43 in a rabbit model of arterial balloon injury. Mol Med Rep 2012;6:565-569.
125.
Matsuuchi L, Naus CC: Gap junction proteins on the move: connexins, the cytoskeleton and migration. Biochim Biophys Acta 2013;1828:94-108.
[PubMed]
You do not currently have access to this content.