Background/Aims: Amyloid-β (Aβ) plays a crucial role in the onset and progression ofatherosclerosis. Macrophages are a source of matrix metalloproteinases (MMPs), cysteine proteases and transforming growth factor (TGF)-β1 in the vascular wall. The aims of this study were to analyze the capacity of Aβ peptide (1-40) (Aβ40), Aβ peptide (1-42) (Aβ42) and fibrillar Aβ42 (fAβ42) to modulate the expression and activity of MMP-9, MMP-2 and tissue inhibitor of MMP-1 (TIMP-1) in human monocyte-derived macrophages (HMDM). Additionally, we analyzed whether Aβ internalization alters the secretion of cathepsin S (CatS) and TGF-β1 by macrophages. Methods: HMDM were exposed to native and fibrillar Aβ. MMPs and TIMP-1 expression was analyzed by real-time PCR, and MMP abundance by zymography. Protein levels of precursor and active forms of CatS were analyzed by Western blot and TGF-β1 levels by ELISA. Results: Aβ40, Aβ42 and especially fAβ42 strongly induced MMP-9/MMP-2 levels. Moreover, we showed enhanced active CatS and reduced TGF-β1 protein levels in the secretome of Aβ42 and fAβ42-exposed macrophages. Conclusions: Aβ can regulate the proinflammatory state of human macrophages by inducing metallo- and cysteine protease levels and by reducing TGF-β1 secretion. These effects may be crucial in atherosclerosis progression.

1.
Da Costa Dias B, Jovanovic K, Gonsalves D, Weiss SF: Structural and mechanistic commonalities of amyloid-β and the prion protein. Prion 2011;5:126-137.
[PubMed]
2.
Thinakaran G, Koo EH: Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008;283:29615-29619.
[PubMed]
3.
Haass C, Hung AY, Selkoe DJ: Processing of β-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci 1991;11:3783-3793.
[PubMed]
4.
Pimplikar SW: Reassessing the amyloid cascade hypothesis of Alzheimer's disease. Int J Biochem Cell Biol 2009;41:1261-1268.
[PubMed]
5.
Bitan G, Vollers SS, Teplow DB: Elucidation of primary structure elements controlling early amyloid β-protein oligomerization. J Biol Chem 2003;278:34882-34889.
[PubMed]
6.
Teplow DB, Lazo ND, Bitan G, Bernstein S, Wyttenbach T, Bowers MT, Baumketner A, Shea JE, Urbanc B, Cruz L, Borreguero J, Stanley HE: Elucidating amyloid β-protein folding and assembly: a multidisciplinary approach. Acc Chem Res 2006;39:635-645.
[PubMed]
7.
Howlett GJ, Moore KJ: Untangling the role of amyloid in atherosclerosis. Curr Opin Lipidol 2006;17:541-547.
[PubMed]
8.
Haggqvist B, Naslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, Nordstedt C, Engstrom U, Westermark P: Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci USA 1999;96:8669-8674.
[PubMed]
9.
Mucchiano GI, Haggqvist B, Sletten K, Westermark P: Apolipoprotein A-1-derived amyloid in atherosclerotic plaques of the human aorta. J Pathol 2001;193:270-275.
[PubMed]
10.
Kozel BA, Wachi H, Davis EC, Mecham RP: Domains in tropoelastin that mediate elastin deposition in vitro and in vivo. J Biol Chem 2003;278:18491-18498.
[PubMed]
11.
Miao M, Bellingham CM, Stahl RJ, Sitarz EE, Lane CJ, Keeley FW: Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 2003;278:48553-48562.
[PubMed]
12.
Tamburro AM, Lorusso M, Ibris N, Pepe A, Bochicchio B: Investigating by circular dichroism some amyloidogenic elastin-derived polypeptides. Chirality 2010;22(suppl 1):E56-E66.
[PubMed]
13.
Roher AE, Kokjohn TA: Commentary on ‘Alzheimer's disease drug development and the problem of the blood-brain barrier' - Alzheimer's disease drugs: more than one barrier to breach. Alzheimers Dement 2009;5:437-438.
[PubMed]
14.
Bales KR, Dodart JC, DeMattos RB, Holtzman DM, Paul SM: Apolipoprotein E, amyloid, and Alzheimer disease. Mol Interv 2002;2:363-375.
[PubMed]
15.
Blennow K, Hampel H: CSF markers for incipient Alzheimer's disease. Lancet Neurol 2003;2:605-613.
[PubMed]
16.
Haass C, Selkoe DJ: Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 1993;75:1039-1042.
[PubMed]
17.
Selkoe DJ: Alzheimer's disease: a central role for amyloid. J Neuropathol Exp Neurol 1994;53:438-447.
[PubMed]
18.
Verdier Y, Penke B: Binding sites of amyloid β-peptide in cell plasma membrane and implications for Alzheimer's disease. Curr Protein Pept Sci 2004;5:19-31.
[PubMed]
19.
Zhao L, Lin S, Bales KR, Gelfanova V, Koger D, Delong C, Hale J, Liu F, Hunter JM, Paul SM: Macrophage-mediated degradation of β-amyloid via an apolipoprotein E isoform-dependent mechanism. J Neurosci 2009;29:3603-3612.
[PubMed]
20.
Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S: Aβ-degrading enzymes in Alzheimer's disease. Brain Pathol 2008;18:240-252.
[PubMed]
21.
Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P: Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006;114:55-62.
[PubMed]
22.
Gough PJ, Gomez IG, Wille PT, Raines EW: Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006;116:59-69.
[PubMed]
23.
Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L: Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003;107:1579-1585.
[PubMed]
24.
Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM: Identification of 92-kD gelatinase in human coronary atherosclerotic lesions: association of active enzyme synthesis with unstable angina. Circulation 1995;91:2125-2131.
[PubMed]
25.
Rocken C, Tautenhahn J, Buhling F, Sachwitz D, Vockler S, Goette A, Burger T: Prevalence and pathology of amyloid in atherosclerotic arteries. Arterioscler Thromb Vasc Biol 2006;26:676-677.
[PubMed]
26.
Riese RJ, Mitchell RN, Villadangos JA, Shi GP, Palmer JT, Karp ER, De Sanctis GT, Ploegh HL, Chapman HA: Cathepsin S activity regulates antigen presentation and immunity. J Clin Invest 1998;101:2351-2363.
[PubMed]
27.
Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, McNeish JD, Eastman SE, Howard ED, Clarke SR, Rosloniec EF, Elliott EA, Rudensky AY: Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 1999;10:207-217.
[PubMed]
28.
Shi GP, Villadangos JA, Dranoff G, Small C, Gu L, Haley KJ, Riese R, Ploegh HL, Chapman HA: Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 1999;10:197-206.
[PubMed]
29.
Beers C, Honey K, Fink S, Forbush K, Rudensky A: Differential regulation of cathepsin S and cathepsin l in interferon γ-treated macrophages. J Exp Med 2003;197:169-179.
[PubMed]
30.
Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, Kodama T, Tsimikas S, Witztum JL, Lu ML, Sakara Y, Chin MT, Libby P, Shi GP: Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003;111:897-906.
[PubMed]
31.
McCaffrey TA, Du B, Fu C, Bray PJ, Sanborn TA, Deutsch E, Tarazona N, Shaknovitch A, Newman G, Patterson C, Bush HL Jr: The expression of TGF-β receptors in human atherosclerosis: evidence for acquired resistance to apoptosis due to receptor imbalance. J Mol Cell Cardiol 1999;31:1627-1642.
[PubMed]
32.
Bobik A, Agrotis A, Kanellakis P, Dilley R, Krushinsky A, Smirnov V, Tararak E, Condron M, Kostolias G: Distinct patterns of transforming growth factor-β isoform and receptor expression in human atherosclerotic lesions: colocalization implicates TGF-β in fibrofatty lesion development. Circulation 1999;99:2883-2891.
[PubMed]
33.
Stefoni S, Cianciolo G, Donati G, Dormi A, Silvestri MG, Coli L, De Pascalis A, Iannelli S: Low TGF-β1 serum levels are a risk factor for atherosclerosis disease in ESRD patients. Kidney Int 2002;61:324-335.
[PubMed]
34.
Tashiro H, Shimokawa H, Sadamatu K, Yamamoto K: Prognostic significance of plasma concentrations of transforming growth factor-β in patients with coronary artery disease. Coron Artery Dis 2002;13:139-143.
[PubMed]
35.
Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW: Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993;13:1676-1687.
[PubMed]
36.
Jana A, Pahan K: Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase: implications for Alzheimer's disease. J Biol Chem 2004;279:51451-51459.
[PubMed]
37.
Schlenke P, Kluter H, Muller-Steinhardt M, Hammers HJ, Borchert K, Bein G: Evaluation of a novel mononuclear cell isolation procedure for serological HLA typing. Clin Diagn Lab Immunol 1998;5:808-813.
[PubMed]
38.
Deb S, Zhang JW, Gottschall PE: Activated isoforms of MMP-2 are induced in u87 human glioma cells in response to β-amyloid peptide. J Neurosci Res 1999;55:44-53.
[PubMed]
39.
Majumdar A, Chung H, Dolios G, Wang R, Asamoah N, Lobel P, Maxfield FR: Degradation of fibrillar forms of Alzheimer's amyloid β-peptide by macrophages. Neurobiol Aging 2008;29:707-715.
[PubMed]
40.
Floden AM, Combs CK: β-Amyloid stimulates postnatal and adult microglia cultures in a unique manner. J Neurosci 2006;26:4644-4648.
[PubMed]
41.
Otero-Viñas M, Llorente-Cortes V, Peña E, Padro T, Badimon L: Aggregated LDL decrease metaloproteinase-9 expression in human coronary smooth muscle cells. Atherosclerosis 2007;194:326-333.
[PubMed]
42.
Giannelli G, Antonaci S: Gelatinases and their inhibitors in tumor metastasis: from biological research to medical applications. Histol Histopathol 2002;17:339-345.
[PubMed]
43.
Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE: Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β-amyloid and prion proteins. J Neurosci 1999;19:928-939.
[PubMed]
44.
Wright S, Malinin NL, Powell KA, Yednock T, Rydel RE, Griswold-Prenner I: α2β1 and αVβ1 integrin signaling pathways mediate amyloid-β-induced neurotoxicity. Neurobiol Aging 2007;28:226-237.
[PubMed]
45.
Sun CK, Man K, Ng KT, Ho JW, Lim ZX, Cheng Q, Lo CM, Poon RT, Fan ST: Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation. Carcinogenesis 2008;29:2096-2105.
[PubMed]
46.
Nicodemo AA, Pampillo M, Ferreira LT, Dale LB, Cregan T, Ribeiro FM, Ferguson SS: Pyk2 uncouples metabotropic glutamate receptor G protein signaling but facilitates ERK1/2 activation. Mol Brain 2010;3:4.
[PubMed]
47.
Angelucci A, Bologna M: Targeting vascular cell migration as a strategy for blocking angiogenesis: the central role of focal adhesion protein tyrosine kinase family. Curr Pharm Des 2007;13:2129-2145.
[PubMed]
48.
Ding L, Guo D, Homandberg GA: Fibronectin fragments mediate matrix metalloproteinase upregulation and cartilage damage through proline rich tyrosine kinase 2, c-src, NF-κB and protein kinase Cδ. Osteoarthritis Cartilage 2009;17:1385-1392.
[PubMed]
49.
Loeser RF, Forsyth CB, Samarel AM, Im HJ: Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J Biol Chem 2003;278:24577-24585.
[PubMed]
50.
Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P: Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998;102:576-583.
[PubMed]
51.
Cheng XW, Kuzuya M, Sasaki T, Arakawa K, Kanda S, Sumi D, Koike T, Maeda K, Tamaya-Mori N, Shi GP, Saito N, Iguchi A: Increased expression of elastolytic cysteine proteases, cathepsins S and K, in the neointima of balloon-injured rat carotid arteries. Am J Pathol 2004;164:243-251.
[PubMed]
52.
Bouvet C, Moreau S, Blanchette J, de Blois D, Moreau P: Sequential activation of matrix metalloproteinase 9 and transforming growth factor β in arterial elastocalcinosis. Arterioscler Thromb Vasc Biol 2008;28:856-862.
[PubMed]
You do not currently have access to this content.