Abstract
Proper development of the vascular system as one of the earliest and most critical steps during vertebrate embryogenesis is ensured by the exact spatial and temporal control of gene expression in cells forming the vessel network. Whereas the regulation of vascular system development is well elucidated on the level of ligand-receptor signaling, the processes on the transcriptional level are much less understood. As the signaling mechanisms in embryogenesis and pathological conditions are similar, the study of embryonic blood vessel development is of great interest for the treatment of cardiovascular diseases and cancer. This review discusses two transcription factors, HOXA9 and VEZF1, which are relevant for endothelial biology but are excluded in the bulk of transcription factor references discussing endothelial biology. To our knowledge, there is no comprehensive overview of these two transcription factors available to date. Here, we summarize the current knowledge of human HOXA9 and VEZF1 biology and function, we detail their target genes and roles in endothelial biology and propose that HOXA9 and VEZF1 also deserve consideration as relevant transcriptional regulators of endothelial biology. Due to their broad role in multiple aspects of endothelial biology, they might potentially become interesting targets for therapeutic manipulation of pathological blood vessel growth.