Proper development of the vascular system as one of the earliest and most critical steps during vertebrate embryogenesis is ensured by the exact spatial and temporal control of gene expression in cells forming the vessel network. Whereas the regulation of vascular system development is well elucidated on the level of ligand-receptor signaling, the processes on the transcriptional level are much less understood. As the signaling mechanisms in embryogenesis and pathological conditions are similar, the study of embryonic blood vessel development is of great interest for the treatment of cardiovascular diseases and cancer. This review discusses two transcription factors, HOXA9 and VEZF1, which are relevant for endothelial biology but are excluded in the bulk of transcription factor references discussing endothelial biology. To our knowledge, there is no comprehensive overview of these two transcription factors available to date. Here, we summarize the current knowledge of human HOXA9 and VEZF1 biology and function, we detail their target genes and roles in endothelial biology and propose that HOXA9 and VEZF1 also deserve consideration as relevant transcriptional regulators of endothelial biology. Due to their broad role in multiple aspects of endothelial biology, they might potentially become interesting targets for therapeutic manipulation of pathological blood vessel growth.

1.
Carmeliet P: Angiogenesis in life, disease and medicine. Nature 2005;438:932-936.
2.
Eichmann A, Marcelle C, Breant C, Le Douarin NM: Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 1993;42:33-48.
3.
Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J: flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 1993;118:489-498.
4.
Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H: Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998;125:1747-1757.
5.
Oliver G: Lymphatic vasculature development. Nat Rev Immunol 2004;4:35-45.
6.
De Val S, Black BL: Transcriptional control of endothelial cell development. Dev Cell 2009;16:180-195.
7.
De Val S: Key transcriptional regulators of early vascular development. Arterioscler Thromb Vasc Biol 2011;31:1469-1475.
8.
Minami T, Aird WC: Endothelial cell gene regulation. Trends Cardiovasc Med 2005;15:174-184.
9.
Melo LG, Gnecchi M, Pachori AS, Kong D, Wang K, Liu X, Pratt RE, Dzau VJ: Endothelium-targeted gene and cell-based therapies for cardiovascular disease. Arterioscler Thromb Vasc Biol 2004;24:1761-1774.
10.
Lee D, Park C, Lee H, Lugus JJ, Kim SH, Arentson E, Chung YS, Gomez G, Kyba M, Lin S, Janknecht R, Lim DS, Choi K: ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2008;2:497-507.
11.
De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarwal P, Visel A, Xu SM, Pennacchio LA, Dubchak I, Krieg PA, Stainier DY, Black BL: Combinatorial regulation of endothelial gene expression by Ets and Forkhead transcription factors. Cell 2008;135:1053-1064.
12.
Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN: Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 1998;125:4565-4574.
13.
Lawson ND, Weinstein BM: Arteries and veins: making a difference with zebrafish. Nat Rev Genet 2002;3:674-682.
14.
Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M: The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 2004;18:901-911.
15.
You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY: Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 2005;435:98-104.
16.
Chisaka O, Capecchi MR: Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 1991;350:473-479.
17.
Gorski DH, Walsh K: The role of homeobox genes in vascular remodeling and angiogenesis. Circ Res 2000;87:865-872.
18.
Cantile M, Schiavo G, Terracciano L, Cillo C: Homeobox genes in normal and abnormal vasculogenesis. Nutr Metab Cardiovasc Dis 2008;18:651-658.
19.
Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA: Induction of the angiogenic phenotype by Hox D3. J Cell Biol 1997;139:257-264.
20.
Myers C, Charboneau A, Boudreau N: Homeobox B3 promotes capillary morphogenesis and angiogenesis. J Cell Biol 2000;148:343-351.
21.
Wu Y, Moser M, Bautch VL, Patterson C: HoxB5 is an upstream transcriptional switch for differentiation of the vascular endothelium from precursor cells. Mol Cell Biol 2003;23:5680-5691.
22.
Stoll SJ, Bartsch S, Augustin HG, Kroll J: The transcription factor HOXC9 regulates endothelial cell quiescence and vascular morphogenesis in zebrafish via inhibition of interleukin 8. Circ Res 2011;108:1367-1377.
23.
Myers C, Charboneau A, Cheung I, Hanks D, Boudreau N: Sustained expression of homeobox D10 inhibits angiogenesis. Am J Pathol 2002;161:2099-2109.
24.
Francois M, Koopman P, Beltrame M: SoxF genes: key players in the development of the cardio-vascular system. Int J Biochem Cell Biol 2010;42:445-448.
25.
Fontijn RD, Volger OL, Fledderus JO, Reijerkerk A, de Vries HE, Horrevoets AJ: SOX-18 controls endothelial-specific claudin-5 gene expression and barrier function. Am J Physiol Heart Circ Physiol 2008;294:H891-H900.
26.
Mallo M, Wellik DM, Deschamps J: Hox genes and regional patterning of the vertebrate body plan. Dev Biol 2010;344:7-15.
27.
Krumlauf R: Hox genes in vertebrate development. Cell 1994;78:191-201.
28.
Akam M: The molecular basis for metameric pattern in the Drosophila embryo. Development 1987;101:1-22.
29.
Apiou F, Flagiello D, Cillo C, Malfoy B, Poupon MF, Dutrillaux B: Fine mapping of human HOX gene clusters. Cytogenet Cell Genet 1996;73:114-115.
30.
Shen WF, Montgomery JC, Rozenfeld S, Moskow JJ, Lawrence HJ, Buchberg AM, Largman C: AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol Cell Biol 1997;17:6448-6458.
31.
Shen WF, Rozenfeld S, Lawrence HJ, Largman C: The Abd-B-like Hox homeodomain proteins can be subdivided by the ability to form complexes with Pbx1a on a novel DNA target. J Biol Chem 1997;272:8198-8206.
32.
Shen WF, Rozenfeld S, Kwong A, Kom ves LG, Lawrence HJ, Largman C: HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol 1999;19:3051-3061.
33.
Chang CP, Brocchieri L, Shen WF, Largman C, Cleary ML: Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol Cell Biol 1996;16:1734-1745.
34.
Prevot D, Voeltzel T, Birot AM, Morel AP, Rostan MC, Magaud JP, Corbo L: The leukemia-associated protein Btg1 and the p53-regulated protein Btg2 interact with the homeoprotein Hoxb9 and enhance its transcriptional activation. J Biol Chem 2000;275:147-153.
35.
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007;129:1311-1323.
36.
Magli MC, Largman C, Lawrence HJ: Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol 1997;173:168-177.
37.
Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ, Largman C, Humphries RK: Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 1997;17:495-505.
38.
Perkins AC, Cory S: Conditional immortalization of mouse myelomonocytic, megakaryocytic and mast cell progenitors by the Hox-2.4 homeobox gene. EMBO J 1993;12:3835-3846.
39.
Sauvageau G, Lansdorp PM, Eaves CJ, Hogge DE, Dragowska WH, Reid DS, Largman C, Lawrence HJ, Humphries RK: Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994;91:12223-12227.
40.
Pineault N, Helgason CD, Lawrence HJ, Humphries RK: Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002;30:49-57.
41.
Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK, Largman C: Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997;89:1922-1930.
42.
Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G: Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998;17:3714-3725.
43.
Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, Humphries K, Sauvageau G: Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002;99:121-129.
44.
Bandyopadhyay S, Ashraf MZ, Daher P, Howe PH, DiCorleto PE: HOXA9 participates in the transcriptional activation of E-selectin in endothelial cells. Mol Cell Biol 2007;27:4207-4216.
45.
Trivedi CM, Patel RC, Patel CV: Differential regulation of HOXA9 expression by nuclear factor kappa B (NF-κB) and HOXA9. Gene 2008;408:187-195.
46.
Bruhl T, Urbich C, Aicher D, Acker-Palmer A, Zeiher AM, Dimmeler S: Homeobox A9 transcriptionally regulates the EphB4 receptor to modulate endothelial cell migration and tube formation. Circ Res 2004;94:743-751.
47.
Rossig L, Urbich C, Bruhl T, Dernbach E, Heeschen C, Chavakis E, Sasaki K, Aicher D, Diehl F, Seeger F, Potente M, Aicher A, Zanetta L, Dejana E, Zeiher AM, Dimmeler S: Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 2005;201:1825-1835.
48.
Bushati N, Cohen SM: microRNA functions. Annu Rev Cell Dev Biol 2007;23:175-205.
49.
Shen WF, Hu YL, Uttarwar L, Passegue E, Largman C: MicroRNA-126 regulates HOXA9 by binding to the homeobox. Mol Cell Biol 2008;28:4609-4619.
50.
Kirito K, Fox N, Kaushansky K: Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells. Mol Cell Biol 2004;24:6751-6762.
51.
Whitmarsh AJ, Davis RJ: Regulation of transcription factor function by phosphorylation. Cell Mol Life Sci 2000;57:1172-1183.
52.
Eklund EA, Jalava A, Kakar R: Tyrosine phosphorylation of HoxA10 decreases DNA binding and transcriptional repression during interferon γ-induced differentiation of myeloid leukemia cell lines. J Biol Chem 2000;275:20117-20126.
53.
Bourbon HM, Martin-Blanco E, Rosen D, Kornberg TB: Phosphorylation of the Drosophila engrailed protein at a site outside its homeodomain enhances DNA binding. J Biol Chem 1995;270:11130-11139.
54.
Shui C, Spelsberg TC, Riggs BL, Khosla S: Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 2003;18:213-221.
55.
Vijapurkar U, Fischbach N, Shen W, Brandts C, Stokoe D, Lawrence HJ, Largman C: Protein kinase C-mediated phosphorylation of the leukemia-associated HOXA9 protein impairs its DNA binding ability and induces myeloid differentiation. Mol Cell Biol 2004;24:3827-3837.
56.
Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem 1998;67:425-479.
57.
Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem 2001;70:503-533.
58.
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM: Recognition of the polyubiquitin proteolytic signal. EMBO J 2000;19:94-102.
59.
Zhang Y, Morrone G, Zhang J, Chen X, Lu X, Ma L, Moore M, Zhou P: CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein. EMBO J 2003;22:6057-6067.
60.
Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA Jr: Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 1987;84:9238-9242.
61.
Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B: Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 1989;243:1160-1165.
62.
Kansas GS: Selectins and their ligands: current concepts and controversies. Blood 1996;88:3259-3287.
63.
Laubli H, Borsig L: Selectins promote tumor metastasis. Semin Cancer Biol 2010;20:169-177.
64.
St Hill CA: Interactions between endothelial selectins and cancer cells regulate metastasis. Front Biosci 2011;16:3233-3251.
65.
Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG: Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci 2003;116:2461-2470.
66.
Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J: Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242-248.
67.
Breier G: Angiogenesis in embryonic development - a review. Placenta 2000;21(suppl A): S11-S15.
68.
Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, Vestweber D, Risau W, Dejana E: Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 1996;87:630-641.
69.
Xiong JW, Leahy A, Lee HH, Stuhlmann H: Vezf1: a Zn finger transcription factor restricted to endothelial cells and their precursors. Dev Biol 1999;206:123-141.
70.
Koyano-Nakagawa N, Nishida J, Baldwin D, Arai K, Yokota T: Molecular cloning of a novel human cDNA encoding a zinc finger protein that binds to the interleukin-3 promoter. Mol Cell Biol 1994;14:5099-5107.
71.
Aitsebaomo J, Kingsley-Kallesen ML, Wu Y, Quertermous T, Patterson C: Vezf1/DB1 is an endothelial cell-specific transcription factor that regulates expression of the endothelin-1 promoter. J Biol Chem 2001;276:39197-39205.
72.
Zou Z, Ocaya PA, Sun H, Kuhnert F, Stuhlmann H: Targeted Vezf1-null mutation impairs vascular structure formation during embryonic stem cell differentiation. Arterioscler Thromb Vasc Biol 2010;30:1378-1388.
73.
Kuhnert F, Campagnolo L, Xiong JW, Lemons D, Fitch MJ, Zou Z, Kiosses WB, Gardner H, Stuhlmann H: Dosage-dependent requirement for mouse Vezf1 in vascular system development. Dev Biol 2005;283:140-156.
74.
Gowher H, Stuhlmann H, Felsenfeld G: Vezf1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt3b. Genes Dev 2008;22:2075-2084.
75.
Gowher H, Brick K, Camerini-Otero RD, Felsenfeld G: Vezf1 protein binding sites genome-wide are associated with pausing of elongating RNA polymerase II. Proc Natl Acad Sci USA 2012;109:2370-2375.
76.
Lebowitz PF, Prendergast GC: Functional interaction between RhoB and the transcription factor DB1. Cell Adhes Commun 1998;6:277-287.
77.
Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M: PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012;40:D261-D270.
78.
Polevoda B, Sherman F: Nα-terminal acetylation of eukaryotic proteins. J Biol Chem 2000;275:36479-36482.
79.
Yang XJ, Seto E: Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008;31:449-461.
80.
Shahbazian MD, Grunstein M: Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007;76:75-100.
81.
Verdone L, Agricola E, Caserta M, Di ME: Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 2006;5:209-221.
82.
Glozak MA, Sengupta N, Zhang X, Seto E: Acetylation and deacetylation of non-histone proteins. Gene 2005;363:15-23.
83.
Bagnato A, Spinella F: Emerging role of endothelin-1 in tumor angiogenesis. Trends Endocrinol Metab 2003;14:44-50.
84.
Fujitani Y, Oda K, Takimoto M, Inui T, Okada T, Urade Y: Autocrine receptors for endothelins in the primary culture of endothelial cells of human umbilical vein. FEBS Lett 1992;298:79-83.
85.
Saijonmaa O, Nyman T, Fyhrquist F: Endothelin-1 stimulates its own synthesis in human endothelial cells. Biochem Biophys Res Commun 1992;188:286-291.
86.
Okuda Y, Tsurumaru K, Suzuki S, Miyauchi T, Asano M, Hong Y, Sone H, Fujita R, Mizutani M, Kawakami Y, Nakajima T, Soma M, Matsuo K, Suzuki H, Yamashita K: Hypoxia and endothelin-1 induce VEGF production in human vascular smooth muscle cells. Life Sci 1998;63:477-484.
87.
Sato M, Kondoh M: Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 2002;196:9-22.
88.
Miyashita H, Sato Y: Metallothionein 1 is a downstream target of vascular endothelial zinc finger 1 (VEZF1) in endothelial cells and participates in the regulation of angiogenesis. Endothelium 2005;12:163-170.
89.
Pepper MS: Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001;21:1104-1117.
90.
Sato Y: Molecular mechanism of angiogenesis transcription factors and their therapeutic relevance. Pharmacol Ther 2000;87:51-60.
91.
Cassimeris L: The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 2002;14:18-24.
92.
Miyashita H, Kanemura M, Yamazaki T, Abe M, Sato Y: Vascular endothelial zinc finger 1 is involved in the regulation of angiogenesis: possible contribution of stathmin/OP18 as a downstream target gene. Arterioscler Thromb Vasc Biol 2004;24:878-884.
93.
Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991;324:1-8.
94.
Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993;143:401-409.
95.
Choi HJ, Hyun MS, Jung GJ, Kim SS, Hong SH: Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology 1998;55:575-581.
96.
Zetter BR: Angiogenesis and tumor metastasis. Annu Rev Med 1998;49:407-424.
97.
Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature 2000;407:249-257.
98.
Folkman J: Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972;175:409-416.
99.
Kerbel R, Folkman J: Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002;2:727-739.
100.
Young N, Hahn CN, Poh A, Dong C, Wilhelm D, Olsson J, Muscat GE, Parsons P, Gamble JR, Koopman P: Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development. J Natl Cancer Inst 2006;98:1060-1067.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.