In vitro studies on the action of buflomedil (BFL) and its derivative CRL 41034 on the polymorphonuclear cells (PMN) has been performed using functional tests and scanning electron microscopy. The two drugs exhibited the same effects. BFL does not change the in vitro chemotaxis of PMN, but exhibits a regulatory effect on ZMS-induced aggregation of these cells. BFL also appeared to decrease superoxide production of PMN, in a dose- and time-dependent way. The cytoskeleton F-actin polymerization, analyzed through the binding of rhodamin-phalloidin, was increased when the total F-actin of the cells was unchanged. When cell extensions were studied morphologically a change in the shape of the pseudopods as well as the general aspect of the PMN (cottonous aspect) was observed as compared to controls. These drug-induced modifications in the shape change may be efficient in adhesion processes. Finally this latter effect and the influence on oxygen metabolite production could be another means of BFL to protect the microvessels during ischemia, in addition to its vasomotion promoting properties.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.