Experiments were performed to investigate the effect of moderate cooling on adrenergic neuroeffector interaction in canine cutaneous veins. Helical strips of dog’s saphenous vein, untreated or first incubated with 3H-norepinephrine were mounted for superfusion and isometric tension recording; the overflow of endogenous catecholamines or 3H-norepi-nephrine and its metabolites, respectively, were measured in the superfusate. In other experiments the monoamine oxidase activity or the catechol-O-methyltransferase (COMT) activity of the saphenous vein wall was determined. Moderate cooling (from 37 to 24 °C) decreased the evoked release of endogenous norepinephrine during electrical stimulation of the adrenergic nerve endings in the blood vessel wall. Moderate cooling depressed the overflow of 3H-norepinephrine and its metabolites in unstimulated preparations, during electrical stimulation during superfusion with high K+ solution and during exposure to tyramine. Moderate cooling reduced the activity of monoamine oxidase significantly more than that of COMT. The relative alterations in overflow of norepinephrine and its metabolites caused by a same degree of cooling in basal conditions and during the different forms of increased overflow of adrenergic transmitter suggest that lowering the temperature inhibits the exocytotic process, but at the same time slows down the diffusion of norepinephrine from the junctional cleft to the extracellular space to the extent that during sympathetic nerve stimulation at 24 °C the effective junctional concentration of the transmitter may be comparable to that obtained at 37 °C. The inhibitory effect of moderate cooling on the extraneuronal metabolism of norepinephrine appears to affect little the effective junctional concentration of the adrenergic transmitter.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.