Diversity in the genetic profile between individuals and specific ethnic groups affects nutrient requirements, metabolism and response to nutritional and dietary interventions. Indeed, individuals respond differently to lifestyle interventions (diet, physical activity, smoking, etc.). The sequencing of the human genome and subsequent increased knowledge regarding human genetic variation is contributing to the emergence of personalized nutrition. These advances in genetic science are raising numerous questions regarding the mode that precision nutrition can contribute solutions to emerging problems in public health, by reducing the risk and prevalence of nutrition-related diseases. Current views on personalized nutrition encompass omics technologies (nutrigenomics, transcriptomics, epigenomics, foodomics, metabolomics, metagenomics, etc.), functional food development and challenges related to legal and ethical aspects, application in clinical practice, and population scope, in terms of guidelines and epidemiological factors. In this context, precision nutrition can be considered as occurring at three levels: (1) conventional nutrition based on general guidelines for population groups by age, gender and social determinants; (2) individualized nutrition that adds phenotypic information about the person's current nutritional status (e.g. anthropometry, biochemical and metabolic analysis, physical activity, among others), and (3) genotype-directed nutrition based on rare or common gene variation. Research and appropriate translation into medical practice and dietary recommendations must be based on a solid foundation of knowledge derived from studies on nutrigenetics and nutrigenomics. A scientific society, such as the International Society of Nutrigenetics/Nutrigenomics (ISNN), internationally devoted to the study of nutrigenetics/nutrigenomics, can indeed serve the commendable roles of (1) promoting science and favoring scientific communication and (2) permanently working as a ‘clearing house' to prevent disqualifying logical jumps, correct or stop unwarranted claims, and prevent the creation of unwarranted expectations in patients and in the general public. In this statement, we are focusing on the scientific aspects of disciplines covering nutrigenetics and nutrigenomics issues. Genetic screening and the ethical, legal, social and economic aspects will be dealt with in subsequent statements of the Society.

1.
Simopoulos AP: Editorial. J Nutrigenet Nutrigenomics 2008;1:2-3.
2.
Hesketh J: Personalised nutrition: how far has nutrigenomics progressed? Eur J Clin Nutr 2013;67:430-435.
3.
Simopoulos AP: Nutrigenetics/nutrigenomics. Annu Rev Public Health 2010;31:53-68.
4.
Nielsen DE, El-Sohemy A: A randomized trial of genetic information for personalized nutrition. Genes Nutr 2012;7:559-566.
5.
Kohlmeier M: Practical uses of nutrigenetics; in Kohlmeier M (ed): Nutrigenetics: Applying the Science of Personalised Nutrition. Amsterdam, Elsevier, 2013, pp 307-333.
6.
Ferguson LR: Foods and personalized nutrition; in Ferguson LR (ed): Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition. 1. New York, CRC Press, 2014, pp 3-23.
7.
United States Department of Agriculture: Dietary Guidelines for Americans 2015-2020, ed 8. 2015. http://healthgov/dietaryguidelines/2015/guidelines.
8.
Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, et al: Changes in diet quality scores and risk of cardiovascular disease among US men and women. Circulation 2015;132:2212-2219.
9.
de Roos B: Personalised nutrition: ready for practice? Proc Nutr Soc 2013;72:48-52.
10.
Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TA, Tai ES, et al: Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 2011;4:69-89.
11.
McCabe-Sellers B, Lovera D, Nuss H, Wise C, Ning B, Teitel C, et al: Personalizing nutrigenomics research through community based participatory research and omics technologies. OMICS 2008;12:263-272.
12.
Tucker KL, Smith CE, Lai CQ, Ordovas JM: Quantifying diet for nutrigenomic studies. Annu Rev Nutr 2013;33:349-371.
13.
Miggiano GA, De Sanctis R: Nutritional genomics: toward a personalized diet, in Italian. Clin Ter 2006;157:355-361.
14.
Vakili S, Caudill MA: Personalized nutrition: nutritional genomics as a potential tool for targeted medical nutrition therapy. Nutr Rev 2007;65:301-315.
15.
Kaput J: Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol 2008;19:110-120.
16.
Jones DP, Park Y, Ziegler TR: Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr 2012;32:183-202.
17.
Fallaize R, Macready AL, Butler LT, Ellis JA, Lovegrove JA: An insight into the public acceptance of nutrigenomic-based personalised nutrition. Nutr Res Rev 2013;26:39-48.
18.
Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, et al: Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 2015;172:2756-2768.
19.
Pers TH, Timshel P, Hirschhorn JN: SNPsnap: a Web-based tool for identification and annotation of matched SNPs. Bioinformatics 2015;31:418-420.
20.
Maher B: Personal genomes: the case of the missing heritability. Nature 2008;456:18-21.
21.
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al: Finding the missing heritability of complex diseases. Nature 2009;461:747-753.
22.
van Ommen B: Personalized nutrition from a health perspective: luxury or necessity? Genes Nutr 2007;2:3-4.
23.
Trujillo E, Davis C, Milner J: Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 2006;106:403-413.
24.
Mooser V, Ordovas JM: ‘Omic' approaches and lipid metabolism: are these new technologies holding their promises? Curr Opin Lipidol 2003;14:115-119.
25.
Kaput J, Rodriguez RL: Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics 2004;16:166-177.
26.
Grody WW: Molecular genetic risk screening. Annu Rev Med 2003;54:473-490.
27.
Pang AW, MacDonald JR, Pinto D, Wei J, Rafiq MA, Conrad DF, et al: Towards a comprehensive structural variation map of an individual human genome. Genome Biol 2010;11:R52.
28.
Lupski JR: Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998;14:417-422.
29.
Chen L, Zhou W, Zhang L, Zhang F: Genome architecture and its roles in human copy number variation. Genomics Informatics 2014;12:136-144.
30.
Beckmann JS, Estivill X, Antonarakis SE: Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 2007;8:639-646.
31.
Neeha VS, Kinth P: Nutrigenomics research: a review. J Food Sci Technol 2013;50:415-428.
32.
Martinez JA, Parra MD, Santos JL, Moreno-Aliaga MJ, Marti A, Martinez-Gonzalez MA: Genotype-dependent response to energy-restricted diets in obese subjects: towards personalized nutrition. Asia Pacific J Clin Nutr 2008;17(suppl 1):119-122.
33.
Martinez JA, Navas-Carretero S, Saris WH, Astrup A: Personalized weight loss strategies-the role of macronutrient distribution. Nat Rev Endocrinol 2014;10:749-760.
34.
Farooqi IS, O'Rahilly S: Genetics of obesity in humans. Endocr Rev 2006;10:710-718.
35.
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889-894.
36.
Razquin C, Marti A, Martinez JA: Evidences on three relevant obesogenes: MC4R, FTO and PPARgamma. Approaches for personalized nutrition. Mol Nutr Food Res 2011;55:136-149.
37.
Wang J, Wang LJ, Zhong Y, Gu P, Shao JQ, Jiang SS, et al: CETP gene polymorphisms and risk of coronary atherosclerosis in a Chinese population. Lipids Health Disease 2013;12:176.
38.
Lu Y, Tayebi N, Li H, Saha N, Yang H, Heng CK: Association of CETP Taq1B and -629C > A polymorphisms with coronary artery disease and lipid levels in the multi-ethnic Singaporean population. Lipids Health Disease 2013;12:85.
39.
Huang D, Xie X, Ma YT, Huang Y, Ma X: Endothelial lipase-384A/C polymorphism is associated with acute coronary syndrome and lipid status in elderly Uygur patients in Xinjiang. Genet Testing Mol Biomarkers 2014;18:781-784.
40.
Knoblauch H, Bauerfeind A, Krahenbuhl C, Daury A, Rohde K, Bejanin S, et al: Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population. Hum Mol Genet 2002;11:1477-1485.
41.
Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J: Metabolic syndrome: evidences for a personalized nutrition. Mol Nutr Food Res 2012;56:67-76.
42.
Gong P, Madak-Erdogan Z, Li J, Cheng J, Greenlief CM, Helferich W, et al: Transcriptomic analysis identifies gene networks regulated by estrogen receptor alpha (ERalpha) and ERbeta that control distinct effects of different botanical estrogens. Nucl Recept Signal 2014;12:e001.
43.
Liew SC, Gupta ED: Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 2015;58:1-10.
44.
Habel HJ, Duncavage EJ: Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet 2014;206:432e40.
45.
Xu J, Wise C, Varma V, Fang H, Ning B, Hong H, et al: Two new ArrayTrack libraries for personalized biomedical research. BMC Bioinformatics 2010;11(suppl 6):S6.
46.
Chen M, Cho J, Zhao H: Incorporating biological pathways via a Markov random field model in genome-wide association studies. PLoS Genet 2011;7:e1001353.
47.
Shammas MA: Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 2011;14:28-34.
48.
Babizhayev MA, Savel'yeva EL, Moskvina SN, Yegorov YE: Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. Am J Ther 2011;18:e209-e226.
49.
Mirabello L, Huang WY, Wong JY, Chatterjee N, Reding D, Crawford ED, et al: The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell 2009;8:405-413.
50.
Ornish D, Lin J, Daubenmier J, Weidner G, Epel E, Kemp C, et al: Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol 2008;9:1048-1057.
51.
Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr: Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 2008;88:1405-1412.
52.
Garcia-Calzon S, Moleres A, Martinez-Gonzalez MA, Martinez JA, Zalba G, Marti A, et al: Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr 2015;34:694-699.
53.
Baturin AK, Sorokina E, Pogozheva AV, Tutel'ian VA: Genetic approaches to nutrition personalization (in Russian). Vopr Pitan 2012;81:4-11.
54.
Ordovas JM, Mooser V: Nutrigenomics and nutrigenetics. Curr Opin Lipidol 2004;15:101-108.
55.
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al: Large-scale copy number polymorphism in the human genome. Science 2004;305:525-528.
56.
Osborne TF, Goldstein JL, Brown MS: 5′ end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription. Cell 1985;42:203-212.
57.
Kaminski WE, Jendraschak E, Kiefl R, von Schacky C: Dietary omega-3 fatty acids lower levels of platelet-derived growth factor mRNA in human mononuclear cells. Blood 1993;81:1871-1879.
58.
Robinson DR, Urakaze M, Huang R, Taki H, Sugiyama E, Knoell CT, et al: Dietary marine lipids suppress continuous expression of interleukin-1 beta gene transcription. Lipids 1996;31(suppl):S23-S31.
59.
Panagiotou G, Nielsen J: Nutritional systems biology: definitions and approaches. Annu Rev Nutr 2009;29:329-339.
60.
Phillips CM: Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients 2013;5:32-57.
61.
Afman LA, Muller M: Human nutrigenomics of gene regulation by dietary fatty acids. Prog Lipid Res 2012;51:63-70.
62.
Razin A, Szyf M: DNA methylation patterns. Formation and function. Biochim Biophys Acta 1984;782:331-342.
63.
Udali S, Guarini P, Moruzzi S, Choi SW, Friso S: Cardiovascular epigenetics: from DNA methylation to microRNAs. Mol Aspects Med 2013;34:883-901.
64.
Costa FF: Non-coding RNAs, epigenetics and complexity. Gene 2008;410:9-17.
65.
Saetrom P, Snove O Jr, Rossi JJ: Epigenetics and microRNAs. Pediatr Res 2007;61:17R-23R.
66.
Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian development. Science 2001;293:1089-1093.
67.
Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-322.
68.
Fu Y, He C: Nucleic acid modifications with epigenetic significance. Curr Opin Chem Biol 2012;16:516-524.
69.
Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z, et al: Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 2008;582:3313-3319.
70.
Mansego ML, Milagro FI, Campion J, Martinez JA: Techniques of DNA methylation analysis with nutritional applications. J Nutrigenet Nutrigenomics 2013;6:83-96.
71.
Choi SW, Friso S: Epigenetics: a new bridge between nutrition and health. Adv Nutr 2010;1:8-16.
72.
Cheng X, Blumenthal RM: Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 2010;49:2999-3008.
73.
Anderson OS, Sant KE, Dolinoy DC: Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 2012;23:853-859.
74.
Kim KC, Friso S, Choi SW: DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 2009;20:917-926.
75.
Jang H, Mason JB, Choi SW: Genetic and epigenetic interactions between folate and aging in carcinogenesis. J Nutr 2005;135(suppl 12):2967S-2971S.
76.
McKay JA, Waltham KJ, Williams EA, Mathers JC: Folate depletion during pregnancy and lactation reduces genomic DNA methylation in murine adult offspring. Genes Nutr 2011;6:189-196.
77.
Hoile SP, Lillycrop KA, Grenfell LR, Hanson MA, Burdge GC: Increasing the folic acid content of maternal or post-weaning diets induces differential changes in phosphoenolpyruvate carboxykinase mRNA expression and promoter methylation in rats. Br J Nutr 2012;108:852-857.
78.
Martinez JA, Cordero P, Campion J, Milagro FI: Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 2012;71:276-283.
79.
Campion J, Milagro F, Martinez JA: Epigenetics and obesity. Prog Mol Biol Transl Sci 2010;94:291-347.
80.
Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I, et al: A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J 2011;25:1378-1389.
81.
Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, et al: Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 2008;51:615-622.
82.
Ong ML, Lin X, Holbrook JD: Measuring epigenetics as the mediator of gene/environment interactions in DOHaD. J Dev Orig Health Dis 2015;6:10-16.
83.
Garcia-Canas V, Simo C, Leon C, Cifuentes A: Advances in nutrigenomics research: novel and future analytical approaches to investigate the biological activity of natural compounds and food functions. J Pharm Biomed Anal 2010;51:290-304.
84.
Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, et al: The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 2004;3:311-326.
85.
Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H: Nutrigenomics in human intervention studies: current status, lessons learned and future perspectives. Mol Nutr Food Res 2011;55:341-358.
86.
Hyotylainen T, Bondia-Pons I, Oresic M: Lipidomics in nutrition and food research. Mol Nutr Food Res 2013;57:1306-1318.
87.
Dennis EA: Lipidomics joins the omics evolution. Proc Natl Acad Sci USA 2009;106:2089-2090.
88.
Gross RW, Han X: Lipidomics at the interface of structure and function in systems biology. Chem Biol 2011;18:284-291.
89.
Chait BT: Mass spectrometry in the postgenomic era. Annu Rev Biochem 2011;80:239-246.
90.
Smilowitz JT, Zivkovic AM, Wan YJ, Watkins SM, Nording ML, Hammock BD, et al: Nutritional lipidomics: molecular metabolism, analytics, and diagnostics. Mol Nutr Food Res 2013;57:1319-1335.
91.
Rezzi S, Martin FP, Kochhar S: Defining personal nutrition and metabolic health through metabonomics. Ernst Schering Found Symp Proc 2007;251-264.
92.
Claus SP, Swann JR: Nutrimetabonomics: applications for nutritional sciences, with specific reference to gut microbial interactions. Annu Rev Food Sci Technol 2013;4:381-399.
93.
Cifuentes A: Food analysis: present, future and foodomics. ISRN Analyt Chem 2012;84:1308-1319.
94.
Rimbach G, Boesch-Saadatmandi C, Frank J, Fuchs D, Wenzel U, Daniel H, et al: Dietary isoflavones in the prevention of cardiovascular disease - a molecular perspective. Food Chem Toxicol 2008;46:1308-1319.
95.
Wishart DS: Metabolomics: applications to food science and nutrition research. Trends Biotechnol 2008;19:482-493.
96.
Llorach R, Urpi-Sarda M, Tulipani S, Garcia-Aloy M, Monagas M, Andres-Lacueva C: Metabolomic fingerprint in patients at high risk of cardiovascular disease by cocoa intervention. Mol Nutr Food Res 2013;57:962-973.
97.
Redeuil K, Smarrito-Menozzi C, Guy P, Rezzi S, Dionisi F, Williamson G, et al: Identification of novel circulating coffee metabolites in human plasma by liquid chromatography-mass spectrometry. J Chromatogr A 2011;1218:4678-4688.
98.
Johansson-Persson A, Barri T, Ulmius M, Onning G, Dragsted LO: LC-QTOF/MS metabolomic profiles in human plasma after a 5-week high dietary fiber intake. Anal Bioanal Chem 2013;405:4799-4809.
99.
Zulet MA, Bondia-Pons I, Abete I, de la Iglesia R, Lopez-Legarrea P, Forga L, et al: The reduction of the metabolyc syndrome in Navarra-Spain (RESMENA-S) study: a multidisciplinary strategy based on chrononutrition and nutritional education, together with dietetic and psychological control. Nutr Hosp 2011;26:16-26.
100.
Dunn WB, Bailey NJ, Johnson HE: Measuring the metabolome: current analytical technologies. Analyst 2005;130:606-625.
101.
Capozzi F, Bordoni A: Foodomics: a new comprehensive approach to food and nutrition. Genes Nutr 2013;8:1-4.
102.
Parslow V, Ferguson LR: Commercialization and potential nutrigenetics and nutrigenomics; in Ferguson LR (ed): Nutrigenomics and Nutrigenetics in Functional Foods and Personalized Nutrition. 1. New York, CRC Press, 2014, pp 305-331.
103.
Herrero M, Garcia-Canas V, Simo C, Cifuentes A: Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 2010;31:205-228.
104.
Herrero M, Simo C, Garcia-Canas V, Ibanez E, Cifuentes A: Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 2012;31:49-69.
105.
Cifuentes A: Food analysis and foodomics. J Chromatogr A 2009;1216:7109.
106.
Bordoni A, Capozzi F: Foodomics for healthy nutrition. Curr Opin Clin Nutr Metab Care 2014;17:418-424.
107.
Sekirov I, Russell SL, Antunes LC, Finlay BB: Gut microbiota in health and disease. Physiol Rev 2010;90:859-904.
108.
Guarner F, Malagelada JR: Gut flora in health and disease. Lancet 2003;361:512-519.
109.
Collino S, Martin FP, Kochhar S, Rezzi S: Monitoring healthy metabolic trajectories with nutritional metabonomics. Nutrients 2009;1:101-110.
110.
Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL Jr: Short chain fatty acids and their receptors: new metabolic targets. Transl Res 2013;161:131-140.
111.
Cani PD, Everard A, Duparc T: Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 2013;13:935-940.
112.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-1031.
113.
Tagliabue A, Elli M: The role of gut microbiota in human obesity: recent findings and future perspectives. Nutr Metab Cardiovasc Dis 2013;23:160-168.
114.
Fukuda S, Ohno H: Gut microbiome and metabolic diseases. Semin Immunopathol 2014;36:103-114.
115.
Lee CY: The effect of high-fat diet-induced pathophysiological changes in the gut on obesity: what should be the ideal treatment? Clin Transl Gastroenterol 2013;4:e39.
116.
Gupta P, Andrew H, Kirchner BS, Guandalini S: Is lactobacillus GG helpful in children with Crohn's disease? Results of a preliminary, open-label study. J Pediatr Gastroenterol Nutr 2000;31:453-457.
117.
Marshall B: Helicobacter pylori: past, present and future. Keio J Med 2003;52:80-85.
118.
Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M: Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 2001;108:516-520.
119.
Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al: Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011;332:970-974.
120.
Flint HJ: The impact of nutrition on the human microbiome. Nutr Rev 2012;70(suppl 1):S10-S13.
121.
Etxeberria U, Fernandez-Quintela A, Milagro FI, Aguirre L, Martinez JA, Portillo MP: Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 2013;61:9517-9533.
122.
Devkota S, Chang EB: Nutrition, microbiomes, and intestinal inflammation. Curr Opin Gastroenterol 2013;29:603-607.
123.
Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, et al: The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 2015;64:406-417.
124.
Kumar H, Wacklin P, Nakphaichit M, Loyttyniemi E, Chowdhury S, Shouche Y, et al: Secretor status is strongly associated with microbial alterations observed during pregnancy. PLoS One 2015;10:e0134623.
125.
Abrahamsson TR, Wu RY, Jenmalm MC: Gut microbiota and allergy: the importance of the pregnancy period. Pediatr Res 2015;77:214-219.
126.
Mendelsohn AR, Larrick JW: Dietary modification of the microbiome affects risk for cardiovascular disease. Rejuvenation Res 2013;16:241-244.
127.
Kang JX: Gut microbiota and personalized nutrition. J Nutrigenet Nutrigenomics 2013;6:I-II.
128.
Rubio-Aliaga I, Kochhar S, Silva-Zolezzi I: Biomarkers of nutrient bioactivity and efficacy: a route toward personalized nutrition. J Clin Gastroenterol 2012;46:545-554.
129.
Fenech M: Genome health nutrigenomics and nutrigenetics - diagnosis and nutritional treatment of genome damage on an individual basis. Food Chem Toxicol 2008;46:1365-1370.
130.
Kang JX: Future directions in nutrition research. J Nutrigenet Nutrigenomics 2013;6:I-III.
131.
Gibney MJ, Walsh MC: The future direction of personalised nutrition: my diet, my phenotype, my genes. Proc Nutr Soc 2013;72:219-225.
132.
Martínez JA: Perspectives on personalized nutrition for obesity. J Nutrigenet Nutrigenomics 2014;7:188-190.
133.
Juma S, Imrham V, Vijayagopal P, Prasad C: Prescribing personalized nutrition for cardiovascular health: are we ready? J Nutrigenet Nutrigenomics 2014;7:153-160.
134.
Bahcall O: Precision medicine. Nature 2015;526:335.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.