Skip to Main Content
Skip Nav Destination

Issues

Journal of Innate Immunity 2023, Vol. 15, No. 1

Research Article

J Innate Immun (2023) 15 (1): 1–15. https://doi.org/10.1159/000524583
J Innate Immun (2023) 15 (1): 16–36. https://doi.org/10.1159/000524587
J Innate Immun (2023) 15 (1): 37–49. https://doi.org/10.1159/000524693
J Innate Immun (2023) 15 (1): 50–66. https://doi.org/10.1159/000525291
J Innate Immun (2023) 15 (1): 67–77. https://doi.org/10.1159/000525315
J Innate Immun (2023) 15 (1): 78–95. https://doi.org/10.1159/000525088
J Innate Immun (2023) 15 (1): 96–106. https://doi.org/10.1159/000525292
J Innate Immun (2023) 15 (1): 107–121. https://doi.org/10.1159/000525089
J Innate Immun (2023) 15 (1): 122–135. https://doi.org/10.1159/000525508
J Innate Immun (2023) 15 (1): 136–152. https://doi.org/10.1159/000525479
J Innate Immun (2023) 15 (1): 153–173. https://doi.org/10.1159/000525536
J Innate Immun (2023) 15 (1): 174–187. https://doi.org/10.1159/000525572
J Innate Immun (2023) 15 (1): 188–203. https://doi.org/10.1159/000526080
J Innate Immun (2023) 15 (1): 204–221. https://doi.org/10.1159/000526121
J Innate Immun (2023) 15 (1): 222–239. https://doi.org/10.1159/000526528
J Innate Immun (2023) 15 (1): 240–261. https://doi.org/10.1159/000526206
J Innate Immun (2023) 15 (1): 262–282. https://doi.org/10.1159/000526784
J Innate Immun (2023) 15 (1): 283–296. https://doi.org/10.1159/000526622
J Innate Immun (2023) 15 (1): 297–316. https://doi.org/10.1159/000527008
J Innate Immun (2023) 15 (1): 317–332. https://doi.org/10.1159/000526486
J Innate Immun (2023) 15 (1): 333–350. https://doi.org/10.1159/000527549
J Innate Immun (2023) 15 (1): 351–364. https://doi.org/10.1159/000527649
J Innate Immun (2023) 15 (1): 365–379. https://doi.org/10.1159/000527974
J Innate Immun (2023) 15 (1): 380–396. https://doi.org/10.1159/000526324
J Innate Immun (2023) 15 (1): 397–411. https://doi.org/10.1159/000527188
J Innate Immun (2023) 15 (1): 412–427. https://doi.org/10.1159/000528607
J Innate Immun (2023) 15 (1): 428–441. https://doi.org/10.1159/000527624
J Innate Immun (2023) 15 (1): 442–467. https://doi.org/10.1159/000529096
J Innate Immun (2023) 15 (1): 468–484. https://doi.org/10.1159/000530012
J Innate Immun (2023) 15 (1): 485–498. https://doi.org/10.1159/000529931

Review Article

J Innate Immun (2023) 15 (1): 499–515. https://doi.org/10.1159/000530385

Erratum

J Innate Immun (2023) 15 (1): 516. https://doi.org/10.1159/000530893

Research Article

J Innate Immun (2023) 15 (1): 517–530. https://doi.org/10.1159/000530249
J Innate Immun (2023) 15 (1): 531–547. https://doi.org/10.1159/000529782
J Innate Immun (2023) 15 (1): 548–561. https://doi.org/10.1159/000530284
Highlights

  • hFPR2 deficiency in myeloid cells amplified cardiac dysfunction, worsened clinical outcome, and impaired bacterial clearance in mice subjected to CLP-induced polymicrobial sepsis.

  • Myeloid cell-specific hFPR2 KO led to an imbalance between pro-inflammatory and pro-resolving immune cell recruitment both within the hearts and in peritoneal cavity in septic mice.

  • The cardioprotective effects of AnxA1 are blunted in myeloid cell-specific hFPR2 KO mice, where it failed to polarize macrophages toward an MHC II phenotype.

J Innate Immun (2023) 15 (1): 562–580. https://doi.org/10.1159/000530374
J Innate Immun (2023) 15 (1): 581–598. https://doi.org/10.1159/000530083
J Innate Immun (2023) 15 (1): 599–613. https://doi.org/10.1159/000531266
J Innate Immun (2023) 15 (1): 614–628. https://doi.org/10.1159/000530966
J Innate Immun (2023) 15 (1): 629–646. https://doi.org/10.1159/000533606
J Innate Immun (2023) 15 (1): 647–664. https://doi.org/10.1159/000532063

Review Article

J Innate Immun (2023) 15 (1): 665–679. https://doi.org/10.1159/000533602

Research Article

J Innate Immun (2023) 15 (1): 680–696. https://doi.org/10.1159/000533898
J Innate Immun (2023) 15 (1): 697–708. https://doi.org/10.1159/000534099
J Innate Immun (2023) 15 (1): 709–723. https://doi.org/10.1159/000533525
J Innate Immun (2023) 15 (1): 724–738. https://doi.org/10.1159/000534068

Review Article

J Innate Immun (2023) 15 (1): 739–750. https://doi.org/10.1159/000533897

Brief Report

J Innate Immun (2023) 15 (1): 751–764. https://doi.org/10.1159/000533873

Research Article

J Innate Immun (2023) 15 (1): 765–781. https://doi.org/10.1159/000533732

Review Article

J Innate Immun (2023) 15 (1): 782–803. https://doi.org/10.1159/000534872
J Innate Immun (2023) 15 (1): 804–821. https://doi.org/10.1159/000534162

Research Article

J Innate Immun (2023) 15 (1): 822–835. https://doi.org/10.1159/000534704
J Innate Immun (2023) 15 (1): 836–849. https://doi.org/10.1159/000535084
J Innate Immun (2023) 15 (1): 850–864. https://doi.org/10.1159/000533339
J Innate Immun (2023) 15 (1): 865–875. https://doi.org/10.1159/000534736
J Innate Immun (2023) 15 (1): 876–892. https://doi.org/10.1159/000534639
J Innate Immun (2023) 15 (1): 893–910. https://doi.org/10.1159/000534830
J Innate Immun (2023) 15 (1): 911–924. https://doi.org/10.1159/000535120

Review Article

J Innate Immun (2023) 15 (1): 925–943. https://doi.org/10.1159/000535452

Acknowledgement to Reviewers

J Innate Immun (2023) 15 (1): 944. https://doi.org/10.1159/000535361
Close Modal

or Create an Account

Close Modal
Close Modal