Cell-to-cell signaling via small molecules is an essential process to coordinate behavior in single species within a community, and also across kingdoms. In this review, we discuss the quorum sensing (QS) systems used by the opportunistic pathogen Pseudomonas aeruginosa to sense bacterial population density and fitness, and regulate virulence, biofilm development, metabolite acquisition, and mammalian host defense. We also focus on the role of N-acylhomoserine lactone-dependent QS signaling in the modulation of innate immune responses connected together via calcium signaling, homeostasis, mitochondrial and cytoskeletal dynamics, and governing transcriptional and proteomic responses of host cells. A future perspective emphasizes the need for multidisciplinary efforts to bring current knowledge of QS into a more detailed understanding of the communication between bacteria and host, as well as into strategies to prevent and treat P. aeruginosa infections and reduce the rate of antibiotic resistance.

This content is only available via PDF.
Open Access License / Drug Dosage / Disclaimer
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.