(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.

1.
Lovewell RR, Patankar YR, Berwin B: Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014;306:L591-L603.
[PubMed]
2.
Gaspar MC, Couet W, Olivier JC, Pais AA, Sousa JJ: Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review. Eur J Clin Microbiol Infect Dis 2013;32:1231-1252.
[PubMed]
3.
Chmiel JF, Aksamit TR, Chotirmall SH, Dasenbrook EC, Elborn JS, LiPuma JJ, Ranganathan SC, Waters VJ, Ratjen FA: Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, Gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 2014;11:1298-1306.
[PubMed]
4.
Savoia D: New perspectives in the management of Pseudomonas aeruginosa infections. Future Microbiol 2014;9:917-928.
[PubMed]
5.
Das RR, Kabra SK, Singh M: Treatment of Pseudomonas and Staphylococcus bronchopulmonary infection in patients with cystic fibrosis. ScientificWorldJournal 2013;2013:645653.
[PubMed]
6.
Borowitz D: CFTR, bicarbonate, and the pathophysiology of cystic fibrosis. Pediatr Pulmonol 2015;50:S4-S30.
[PubMed]
7.
Caverly LJ, Zhao J, LiPuma JJ: Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection. Pediatr Pulmonol 2015;50:S31-S38.
[PubMed]
8.
Rieber N, Hector A, Carevic M, Hartl D: Current concepts of immune dysregulation in cystic fibrosis. Int J Biochem Cell Biol 2014;52:108-112.
[PubMed]
9.
Witko-Sarsat V: Neutrophils in the innate immunity conundrum of cystic fibrosis: a CFTR-related matter? J Innate Immun 2013;5:195-196.
[PubMed]
10.
Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Döring G: Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 2012;11:363-382.
[PubMed]
11.
Stoltz DA, Meyerholz DK, Welsh MJ: Origins of cystic fibrosis lung disease. N Engl J Med 2015;372:1574-1575.
[PubMed]
12.
Byrne AJ, Mathie SA, Gregory LG, Lloyd CM: Pulmonary macrophages: key players in the innate defence of the airways. Thorax 2015;70:1189-1196.
[PubMed]
13.
Nichols DP, Chmiel JF: Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 2015;50:S39-S56.
[PubMed]
14.
MacKenzie T, Gifford AH, Sabadosa KA, Quinton HB, Knapp EA, Goss CH, Marshall BC: Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the cystic fibrosis foundation patient registry. Ann Intern Med 2014;161:233-241.
[PubMed]
15.
Hanrahan JW, Sampson HM, Thomas DY: Novel pharmacological strategies to treat cystic fibrosis. Trends Pharmacol Sci 2013;34:119-125.
[PubMed]
16.
O'Neil DA, Fraser-Pitt D: Progress towards next-generation therapeutics for cystic fibrosis. Future Med Chem 2014;6:1067-1079.
[PubMed]
17.
Bell SC, De Boeck K, Amaral MD: New pharmacological approaches for cystic fibrosis: promises, progress, pitfalls. Pharmacol Ther 2015;145:19-34.
[PubMed]
18.
Trescott L, Holcomb J, Spellmon N, Mcleod C, Aljehane L, Sun F, Li C, Yang Z: Targeting the root cause of cystic fibrosis. Curr Drug Targets 2015;16:933-944.
[PubMed]
19.
Amin R, Ratjen F: Emerging drugs for cystic fibrosis. Expert Opin Emerg Drugs 2014;19:143-155.
[PubMed]
20.
Cutting GR: Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 2015;16:45-56.
[PubMed]
21.
Yang H, Ma T: F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015;25:991-1002.
[PubMed]
22.
Solomon GM, Marshall SG, Ramsey BW, Rowe SM: Breakthrough therapies: cystic fibrosis (CF) potentiators and correctors. Pediatr Pulmonol 2015;50:S3-S13.
[PubMed]
23.
Goralski JL, Davis SD: Improving complex medical care while awaiting next-generation CFTR potentiators and correctors: the current pipeline of therapeutics. Pediatr Pulmonol 2015;50:S66-S73.
[PubMed]
24.
Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP: Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997;243:527-536.
[PubMed]
25.
Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH: Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 1997;243:518-526.
[PubMed]
26.
Meijer L, Raymond E: Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc Chem Res 2003;36:417-425.
[PubMed]
27.
Meijer L, Bettayeb K, Galons H: Roscovitine (CYC202, seliciclib); in Yue E, Smith PJ (eds): Monographs on Enzyme Inhibitors. Boca Raton, CRC Press, Taylor & Francis, 2006, vol 2: CDK Inhibitors and Their Potential as Anti-Tumor Agents, pp 187-226.
28.
Aldoss IT, Tashi T, Ganti AK: Seliciclib in malignancies. Expert Opin Investig Drugs 2009;18:1957-1965.
[PubMed]
29.
Knockaert M, Greengard P, Meijer L: Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 2002;23:417-425.
[PubMed]
30.
Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, Morgan DO, Tsai LH, Wolgemuth DJ: Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009;11:1275-1276.
[PubMed]
31.
Lim S, Kaldis P: Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013;140:3079-3093.
[PubMed]
32.
Bach S, Knockaert M, Lozach O, Reinhardt J, Baratte B, Schmitt S, Coburn SP, Tang L, Jiang T, Liang DC, Galons H, Dierick JF, Totzke F, Schächtele C, Lerman AS, Carnero A, Wan Y, Gray N, Meijer L: Roscovitine targets: protein kinases and pyridoxal kinase. J Biol Chem 2005;280:31208-31219.
[PubMed]
33.
Tang L, Li MH, Cao P, Wang F, Chang WR, Bach S, Reinhardt J, Koken M, Galons H, Wan Y, Gray N, Meijer L, Jiang T, Liang DC: Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives. J Biol Chem 2005;280:31220-31229.
[PubMed]
34.
Delehouzé C, Gödl K, Loaëc N, Bruyère C, Desban N, Oumata N, Galons H, Roumeliotis TI, Giannopoulou EG, Grenet J, Twitchell D, Lahti J, Mouchet N, Galibert MD, Garbis S, Meijer L: CDK/CK1 inhibitors roscovitine and CR8 down-regulate amplified MYCN in neuroblastoma cells. Oncogene 2014;33:5675-5687.
[PubMed]
35.
Mapelli M, Massimiliano L, Crovace C, Seeliger M, Tsai LH, Meijer L, Musacchio A: Mechanism of CDK5/p25 binding by CDK inhibitors. J Med Chem 2005;48:671-679.
[PubMed]
36.
Bettayeb K, Baunbæk D, Delehouzé C, Loaëc N, Hole A, Baumli S, Endicott JA, Douc-Rasy S, Bénard J, Oumata N, Galons H, Meijer L: CDK inhibitors roscovitine and CR8 trigger Mcl-1 down-regulation and apoptotic cell death in neuroblastoma cells. Genes Cancer 2010;1:369-380.
[PubMed]
37.
Meijer L, Legraverend M, Bisagni E, Strnad M: Nouveaux dérivés de purine possédant notamment des propriétés anti-prolifératives et leurs applications biologiques. France 9514237; WO 97/20842; EP 0874847; JP 501408; US 2002/0049218 A1; US 10/973 941.
38.
Timsit S, Meen B, Meijer L: Utilisation de la S-roscovitine pour la fabrication d'un médicament. 06/02773, March 30, 2006.
39.
Becq F, Meijer L: Utilisations de dérivés de purines pour la fabrication de médicaments pour le traitement de la mucoviscidose et de maladies liées à un défaut d'adressage des protéines dans les cellules. FR 0410958, filed October 15, 2004; WO2006/042949; EP1802310; CA2584195; US 2007275986.
40.
Oumata N, Ferandin Y, Meijer L, Galons H: Practical synthesis of roscovitine and CR8. Org Process Res Dev 2009;13:641-644.
41.
Menn B, Bach B, Blevins TL, Campbell M, Ivanov A, Ben-Ari Y, Meijer L, Timsit S: Delayed treatment with systemic (S)-roscovitine provides CDK5-mediated neuroprotection in animal stroke models. PLoS One 2010;5:e12117.
[PubMed]
42.
Chagniel L, Robitaille C, Lebel M, Cyr M: Striatal inhibition of calpains prevents levodopa-induced neurochemical changes and abnormal involuntary movements in the hemiparkinsonian rat model. Neurobiol Dis 2012;45:645-655.
[PubMed]
43.
Kabadi SV, Stoica BA, Byrnes KR, Hanscom M, Loane DJ, Faden AI: Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J Cereb Blood Flow Metab 2012;32:137-149.
[PubMed]
44.
Schang LM, Bantly A, Knockaert M, Shaheen F, Meijer L, Malim MH, Gray NS, Schaffer PA: Pharmacological cyclin-dependent kinase inhibitors inhibit replication of wild-type and drug-resistant strains of herpes simplex virus and human immunodeficiency virus type 1 by targeting cellular, not viral, proteins. J Virol 2002;76:7874-7882.
[PubMed]
45.
Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnaya O: Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 2006;444:949-952.
[PubMed]
46.
Bukanov NO, Moreno SE, Natoli TA, Rogers KA, Smith LA, Ledbetter SR, Oumata N, Galons H, Meijer L, Ibraghimov-Beskrovnaya O: CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD. Cell Cycle 2012;11:4040-4046.
[PubMed]
47.
Pippin JW, Qu Q, Meijer L, Shankland SJ: Direct in vivo inhibition of the nuclear cell cycle cascade in experimental mesangial proliferative glomerulonephritis with roscovitine, a novel cyclin-dependent kinase antagonist. J Clin Invest 1997;100:2512-2520.
[PubMed]
48.
Gherardi D, D'Agati V, Chu TH, Barnett A, Gianella-Borradori A, Gelman IH, Nelson PJ: Reversal of collapsing glomerulopathy in mice with the cyclin-dependent kinase inhibitor CYC202. J Am Soc Nephrol 2004;15:1212-1222.
[PubMed]
49.
Milovanceva-Popovska M, Kunter U, Ostendorf T, Petermann A, Rong S, Eitner F, Kerjaschki D, Barnett A, Floege J: R-Roscovitine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury. Kidney Int 2005;67:1362-1370.
[PubMed]
50.
Zoja C, Casiraghi F, Conti S, Corna D, Rottoli D, Cavinato RA, Remuzzi G, Benigni A: Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis Rheum 2007;56:1629-1637.
[PubMed]
51.
Safety and intraocular pressure (IOP)-lowering efficacy of AL-39256 in patients with open- angle glaucoma or ocular hypertension. https://clinicaltrialsgov/ct2/show/NCT00761709.
52.
Cholkar K, Trinh HM, Pal D, Mitra AK: Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin Drug Discov 2015;10:293-313.
[PubMed]
53.
Liang M, Tarr TB, Bravo-Altamirano K, Valdomir G, Rensch G, Swanson L, DeStefino NR, Mazzarisi CM, Olszewski RA, Wilson GM, Meriney SD, Wipf P: Synthesis and biological evaluation of a selective N- and P/Q-type calcium channel agonist. ACS Med Chem Lett 2012;3:985-990.
[PubMed]
54.
Tarr TB, Valdomir G, Liang M, Wipf P, Meriney SD: New calcium channel agonists as potential therapeutics in Lambert-Eaton myasthenic syndrome and other neuromuscular diseases. Ann NY Acad Sci 2012;1275:85-91.
[PubMed]
55.
Wen H, Linhoff MW, Hubbard JM, Nelson NR, Stensland D, Dallman J, Mandel G, Brehm P: Zebrafish calls for reinterpretation for the roles of P/Q calcium channels in neuromuscular transmission. J Neurosci 2013;33:7384-7392.
[PubMed]
56.
Malgrange B, Knockaert M, Belachew S, Nguyen L, Moonen G, Meijer L, Lefebvre PP: The inhibition of cyclin-dependent kinases induces differentiation of supernumerary hair cells and Deiters' cells in the developing organ of Corti. FASEB J 2003;17:2136-2138.
[PubMed]
57.
Yarotskyy V, Gao G, Peterson BZ, Elmslie KS: The Timothy syndrome mutation of cardiac CaV12 (L-type) channels: multiple altered gating mechanisms and pharmacological restoration of inactivation. J Physiol 2009;587:551-565.
[PubMed]
58.
Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE: Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011;471:230-234.
[PubMed]
59.
Paşca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Paşca AM, Cord B, Palmer TD, Chikahisa S, Nishino S, Bernstein JA, Hallmayer J, Geschwind DH, Dolmetsch RE: Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 2011;17:1657-1662.
[PubMed]
60.
Steinman RA, Robinson AR, Feghali-Bostwick CA: Antifibrotic effects of roscovitine in normal and scleroderma fibroblasts. PLoS One 2012;7:e48560.
[PubMed]
61.
Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky K, Fan XM, Lin S, Melmed S: Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA 2011;108:8414-8419.
[PubMed]
62.
Liu NA, Araki T, Cuevas-Ramos D, Hong J, Ben-Shlomo A, Tone Y, Tone M, Melmed S: Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease. J Clin Endocrinol Metab 2015;100:2557-2564.
[PubMed]
63.
Kitani K, Oguma S, Nishiki TI, Ohmori I, Galons H, Matsui H, Meijer L, Tomizawa K: A Cdk5 inhibitor enhances the induction of insulin secretion by exendin-4 both in vitro and in vivo. J Physiol Sci 2007;57:235-239.
[PubMed]
64.
Benson C, White J, De Bono J, O'Donnell A, Raynaud F, Cruickshank C, McGrath H, Walton M, Workman P, Kaye S, Cassidy J, Gianella-Borradori A, Judson I, Twelves C: A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer 2007;96:29-37.
[PubMed]
65.
Le Tourneau C, Faivre S, Laurence V, Delbaldo C, Vera K, Girre V, Chiao J, Armour S, Frame S, Green SR, Gianella-Borradori A, Diéras V, Raymond E: Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer 2010;46:3243-3250.
[PubMed]
66.
de la Motte S, Gianella-Borradori A: Pharmacokinetic model of R-roscovitine and its metabolite in healthy male subjects. Int J Clin Pharmacol Ther 2004;42:232-239.
[PubMed]
67.
Hsieh WS, Soo R, Peh BK, Loh T, Dong D, Soh D, Wong LS, Green S, Chiao J, Cui CY, Lai YF, Lee SC, Mow B, Soong R, Salto-Tellez M, Goh BC: Pharmacodynamic effects of seliciclib, an orally administered cell cycle modulator, in undifferentiated nasopharyngeal cancer. Clin Cancer Res 2009;15:1435-1442.
[PubMed]
68.
Seliciclib (CYC202). http://www.cyclacel.com/research_programs_oncology_cyc202.shtml.
69.
Treatment of Cushing's disease with R-roscovitine. https://clinicaltrials.gov/ct2/show/NCT02160730?term=NCT02160730&rank=1.
70.
ISRCTNregistry. http://www.isrctn.com/ ISRCTN06857980.
71.
Gibbons J, Arat S, Rzucidlo J, Miyoshi K, Waltenburg R, Respess D, Venable A, Stice S: Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol Reprod 2002;66:895-900.
[PubMed]
72.
Hinrichs K, Choi YH, Varner DD, Hartman DL: Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin. Reproduction 2007;134:319-325.
[PubMed]
73.
Vita M, Abdel-Rehim M, Olofsson S, Hassan Z, Meurling L, Sidén A, Sidén M, Pettersson T, Hassan M: Tissue distribution, pharmacokinetics and identification of roscovitine metabolites in rat. Eur J Pharm Sci 2005;25:91-103.
[PubMed]
74.
Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R, Gray M, Crescenzi E, Martin MC, Brady HJ, Savill JS, Dransfield I, Haslett C: Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med 2006;12:1056-1064; erratum 1434.
[PubMed]
75.
Hoogendijk AJ, Roelofs JJ, Duitman J, van Lieshout MH, Blok DC, van der Poll T, Wieland CW: R-Roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae. Mol Med 2012;18:1086-1095.
[PubMed]
76.
Hoogendijk AJ, Kuipers MT, van der Poll T, Schultz MJ, Wieland CW: Cyclin-dependent kinase inhibition reduces lung damage in a mouse model of ventilator-induced lung injury. Shock 2012;38:375-380.
[PubMed]
77.
Nutley BP, Raynaud FI, Wilson SC, Fischer PM, Hayes A, Goddard PM, McClue SJ, Jarman M, Lane DP, Workman P: Metabolism and pharmacokinetics of the cyclin-dependent kinase inhibitor R-roscovitine in the mouse. Mol Cancer Ther 2005;4:125-139.
[PubMed]
78.
Norez C, Vandebrouck C, Noel S, Durieu E, Oumata N, Galons H, Antigny F, Chatelier A, Bois P, Meijer L, Becq F: Roscovitine is a proteostasis regulator rescuing the trafficking defect of F508del-CFTR by a cyclin-dependent kinase (CDK) independent mechanism of action. Br J Pharmacol 2014;171:4831-4849.
[PubMed]
79.
Riazanski V, Gabdoulkhakova AG, Boynton LS, Eguchi RR, Deriy LV, Hogarth DK, Loaëc N, Oumata N, Galons H, Brown ME, Shevchenko P, Gallan AJ, Yoo SG, Naren AP, Villereal ML, Beacham DW, Bindokas VP, Birnbaumer L, Meijer L, Nelson DJ: TRPC6 channel translocation into phagosomal membrane augments phagosomal function. Proc Natl Acad Sci USA 2015;112:E6486-E6495.
[PubMed]
80.
Trzcinska-Daneluti AM, Nguyen L, Jiang C, Fladd C, Uehling D, Prakesch M, Al-awar R, Rotin D: Use of kinase inhibitors to correct ΔF508-CFTR function. Mol Cell Proteomics 2012;11:745-757.
[PubMed]
81.
Tolle N, Kunick C: Paullones as inhibitors of protein kinases. Curr Top Med Chem 2011;11:1320-1332.
[PubMed]
82.
Di A, Brown ME, Deriy LV, Li C, Szeto FL, Chen Y, Huang P, Tong J, Naren AP, Bindokas V, Palfrey HC, Nelson DJ: CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 2006;8:933-944.
[PubMed]
83.
Del Porto P, Cifani N, Guarnieri S, Di Domenico EG, Mariggiò MA, Spadaro F, Guglietta S, Anile M, Venuta F, Quattrucci S, Ascenzioni F: Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa. PLoS One 2011;6:e19970.
[PubMed]
84.
Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, al-Awqati Q: Defective acidification of intracellular organelles in cystic fibrosis. Nature 1991;352:70-73.
[PubMed]
85.
Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kürthy G, Schmid KW, Weller M, Tümmler B, Lang F, Grassme H, Döring G, Gulbins E: Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008;14:382-391.
[PubMed]
86.
Deriy LV, Gomez EA, Zhang G, Beacham DW, Hopson JA, Gallan AJ, Shevchenko PD, Bindokas VP, Nelson DJ: Disease-causing mutations in the cystic fibrosis transmembrane conductance regulator determine the functional responses of alveolar macrophages. J Biol Chem 2009;284:35926-35938.
[PubMed]
87.
Lamothe J, Valvano MA: Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. Microbiology 2008;154:3825-3834.
[PubMed]
88.
Zhang Y, Li X, Grassme H, Doring G, Gulbins E: Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J Immunol 2010;184:5104-5111.
[PubMed]
89.
Bonfield TL, Hodges CA, Cotton CU, Drumm ML: Absence of the cystic fibrosis transmembrane regulator (CFTR) from myeloid-derived cells slows resolution of inflammation and infection. J Leukoc Biol 2012;92:1111-1122.
[PubMed]
90.
Machen TE: Innate immune response in CF airway epithelia: hyperinflammatory? Am J Physiol 2006;291:C218-C230.
[PubMed]
91.
Haggie PM, Verkman AS: Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages. J Biol Chem 2007;282:31422-31428.
[PubMed]
92.
Haggie PM, Verkman AS: Unimpaired lysosomal acidification in respiratory epithelial cells in cystic fibrosis. J Biol Chem 2008;284:7681-7686.
[PubMed]
93.
Barriere H, Bagdany M, Bossard F, Okiyoneda T, Wojewodka G, Gruenert D, Radzioch D, Lukacs GL: Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles. Mol Biol Cell 2009;20:3125-3141.
[PubMed]
94.
Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ, Grinstein S: A cation counterflux supports lysosomal acidification. J Cell Biol 2010;189:1171-1186.
[PubMed]
95.
Rogers CS, Stoltz DA, Meyerholz DK, Osted- gaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ: Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 2008;321:1837-1841.
[PubMed]
96.
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ: The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2008;295:L240-L263.
[PubMed]
97.
Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS: Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 2008;118:1571-1577.
[PubMed]
98.
Wine JJ: The development of lung disease in cystic fibrosis pigs. Sci Transl Med 2010;2:29ps20.
[PubMed]
99.
Moreland JG, Davis AP, Bailey G, Nauseef WM, Lamb FS: Anion channels, including ClC-3, are required for normal neutrophil oxidative function, phagocytosis, and transendothelial migration. J Biol Chem 2006;281:12277-12288.
[PubMed]
100.
Painter RG, Valentine VG, Lanson NA Jr, Leidal K, Zhang Q, Lombard G, Thompson C, Viswanathan A, Nauseef WM, Wang G, Wang G: CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 2006;45:10260-10269.
[PubMed]
101.
Painter RG, Marrero L, Lombard GA, Valentine VG, Nauseef WM, Wang G: CFTR-mediated halide transport in phagosomes of human neutrophils. J Leukoc Biol 2010;87:933-942.
[PubMed]
102.
Painter RG, Bonvillain RW, Valentine VG, Lombard GA, LaPlace SG, Nauseef WM, Wang G: The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J Leukoc Biol 2008;83:1345-1353.
[PubMed]
103.
Preti D, Szallasi A, Patacchini R: TRP channels as therapeutic targets in airway disorders: a patent review. Expert Opin Ther Pat 2012;22:663-695.
[PubMed]
104.
Banner KH, Igney F, Poll C: TRP channels: emerging targets for respiratory disease. Pharmacol Ther 2011;130:371-384.
[PubMed]
105.
Abbott-Banner K, Poll C, Verkuyl JM: Targeting TRP channels in airway disorders. Curr Top Med Chem 2013;13:310-321.
[PubMed]
106.
Nilius B, Szallasi A: Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014;66:676-814.
[PubMed]
107.
Ong HL, de Souza LB, Cheng KT, Ambudkar IS: Physiological functions and regulation of TRPC channels. Handb Exp Pharmacol 2014;223:1005-1034.
[PubMed]
108.
Holzer P, Izzo AA: The pharmacology of TRP channels. Br J Pharmacol 2014;171:2469-2473.
[PubMed]
109.
Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, Lückhoff A: Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 2003;371:1045-1053.
[PubMed]
110.
Heiner I, Eisfeld J, Lückhoff A: Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium 2003;33:533-540.
[PubMed]
111.
McMeekin SR, Dransfield I, Rossi AG, Haslett C, Walker TR: E-selectin permits communication between PAF receptors and TRPC channels in human neutrophils. Blood 2006;107:4938-4945.
[PubMed]
112.
Damann N, Owsianik G, Li S, Poll C, Nilius B: The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol (Oxf) 2009;195:3-11.
[PubMed]
113.
Finney-Hayward TK, Popa MO, Bahra P, Li S, Poll CT, Gosling M, Nicholson AG, Russell RE, Kon OM, Jarai G, Westwick J, Barnes PJ, Donnelly LE: Expression of transient receptor potential C6 channels in human lung macrophages. Am J Respir Cell Mol Biol 2010;43:296-304.
[PubMed]
114.
Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M, Offermanns S, Veit F, Pak O, Krause KH, Schermuly RT, Brewer AC, Schmidt HH, Seeger W, Shah AM, Gudermann T, Ghofrani HA, Dietrich A: Activation of TRPC6 channels is essential for lung ischaemia- reperfusion induced oedema in mice. Nat Commun 2012;3:649-658.
[PubMed]
115.
Sel S, Rost BR, Yildirim AO, Sel B, Kalwa H, Fehrenbach H, Renz H, Gudermann T, Dietrich A: Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 2008;38:1548-1558.
[PubMed]
116.
Harteneck C, Gollasch M: Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol 2011;12:35-41.
[PubMed]
117.
Leuner K, Kazanski V, Müller M, Essin K, Henke B, Gollasch M, Harteneck C, Müller WE: Hyperforin - a key constituent of St John's wort specifically activates TRPC6 channels. FASEB J 2007;21:4101-4111.
[PubMed]
118.
Miehe S, Kleemann H-W, Struebing C: Use of Norgestimate as a selective inhibitor of TRPC3, TRPC6 and TRPC7 ion channels. EP 2266575 A3; October 26, 2007.
119.
Antigny F, Norez C, Dannhoffer L, Bertrand J, Raveau D, Corbi P, Jayle C, Becq F, Vandebrouck C: Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis. Am J Respir Cell Mol Biol 2011;44:83-90.
[PubMed]
120.
Antigny F, Norez C, Becq F, Vandebrouck C: CFTR and Ca signaling in cystic fibrosis. Front Pharmacol 2011;2:67.
[PubMed]
121.
Hayes E, Pohl K, McElvaney NG, Reeves EP: The cystic fibrosis neutrophil: a specialized yet potentially defective cell. Arch Immunol Ther Exp (Warsz) 2011;59:97-112.
[PubMed]
122.
Van de Weert-van Leeuwen PB, Van Meegen MA, Speirs JJ, Pals DJ, Rooijakkers SH, Van der Ent CK, Terheggen-Lagro SW, Arets HG, Beekman JM: Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent. Am J Respir Cell Mol Biol 2013;49:463-470.
[PubMed]
123.
Zhou Y, Song K, Painter RG, Aiken M, Reiser J, Stanton BA, Nauseef WM, Wang G: Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils. J Innate Immun 2013;5:219-230.
[PubMed]
124.
Pohl K, Hayes E, Keenan J, Henry M, Meleady P, Molloy K, Jundi B, Bergin DA, McCarthy C, McElvaney OJ, White MM, Clynes M, Reeves EP, McElvaney NG: A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood 2014;124:999-1009.
[PubMed]
125.
Ng HP, Zhou Y, Song K, Hodges CA, Drumm ML, Wang G: Neutrophil-mediated phagocytic host defense defect in myeloid CFTR-inactivated mice. PLoS One 2014;9:e106813.
[PubMed]
126.
Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, Punaro M, Baisch J, Guiducci C, Coffman RL, Barrat FJ, Banchereau J, Pascual V: Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 2011;3:73ra20.
[PubMed]
127.
Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS, Friday S, Li S, Patel RM, Subramanian V, Thompson P, Chen P, Fox DA, Pennathur S, Kaplan MJ: NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 2013;5:178ra40.
[PubMed]
128.
Dwyer M, Shan Q, D'Ortona S, Maurer R, Mitchell R, Olesen H, Thiel S, Huebner J, Gadjeva M: Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun 2014;6:765-779.
[PubMed]
129.
Manzenreiter R, Kienberger F, Marcos V, Schilcher K, Krautgartner WD, Obermayer A, Huml M, Stoiber W, Hector A, Griese M, Hannig M, Studnicka M, Vitkov L, Hartl D: Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros 2011;11:84-92.
[PubMed]
130.
Papayannopoulos V, Staab D, Zychlinsky A: Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One 2011;6:e28526.
[PubMed]
131.
Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR, Nichols DP, Taylor-Cousar JL, Saavedra MT, Randell SH, Vasil ML, Burns JL, Moskowitz SM, Nick JA: Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLoS One 2011;6:e23637.
[PubMed]
132.
Yoo DG, Winn M, Pang L, Moskowitz SM, Malech HL, Leto TL, Rada B: Release of cystic fibrosis airway inflammatory markers from Pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation. J Immunol 2010;192:4728-4738.
[PubMed]
133.
Dubois AV, Gauthier A, Brea D, Varaigne F, Diot P, Gauthier F, Attucci S: Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol Biol 2012;47:80-86.
[PubMed]
134.
Yoo D, Floyd M, Winn M, Moskowitz SM, Rada B: NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunol Lett 2014;160:186-194.
[PubMed]
135.
Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A: Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 2011;117:953-959.
[PubMed]
136.
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010;191:677-691.
[PubMed]
137.
Sørensen OE, Clemmensen SN, Dahl SL, Østergaard O, Heegaard NH, Glenthøj A, Nielsen FC, Borregaard N: Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest 2014;124:4539-4548.
[PubMed]
138.
Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA: Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009;184:205-213.
[PubMed]
139.
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A: Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007;176:231-241.
[PubMed]
140.
Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K: Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS One 2011;6:e29318.
[PubMed]
141.
Itakura A, McCarty OJT: Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol 2013;305:C348-C354.
[PubMed]
142.
Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, Bengtsson AA, Blom AM: Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 2012;188:3522-3531.
[PubMed]
143.
Cohen TS, Prince A: Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 2012;18:509-519.
[PubMed]
144.
Dhooghe B, Noël S, Huaux F, Leal T: Lung inflammation in cystic fibrosis: pathogenesis and novel therapies. Clin Biochem 2014;47:539-546.
[PubMed]
145.
Banner KH, De Jonge H, Elborn S, Growcott E, Gulbins E, Konstan M, Moss R, Poll C, Randell SH, Rossi AG, Thomas L, Waltz D: Highlights of a workshop to discuss targeting inflammation in cystic fibrosis. J Cyst Fibros 2009;8:1-8.
[PubMed]
146.
Cantin AM, Hartl D, Konstan MW, Chmiel JF: Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros 2015;14:419-430.
[PubMed]
147.
Gray RD, McCullagh BN, McCray PB: NETs and CF lung disease: current status and future prospects. Antibiotics 2015;4:62-75.
[PubMed]
148.
Rahman S, Gadjeva M: Does NETosis contribute to the bacterial pathoadaptation in cystic fibrosis? Front Immunol 2014;5:378.
[PubMed]
149.
Jovic S, Shikhagaie M, Mörgelin M, Kjellström S, Erjefalt J, Olin AI, Frick IM, Egesten A: Expression of MIG/CXCL9 in cystic fibrosis and modulation of its activities by elastase of Pseudomonas aeruginosa. J Innate Immun 2014;6:846-859.
[PubMed]
150.
Leitch AE, Haslett C, Rossi AG: Cyclin-dependent kinase inhibitor drugs as potential novel anti-inflammatory and pro-resolution agents. Br J Pharmacol 2009;158:1004-1016.
[PubMed]
151.
El Kebir D, Filep JG: Role of neutrophil apoptosis in the resolution of inflammation. ScientificWorldJournal 2010;10:1731-1748.
[PubMed]
152.
Leitch AE, Lucas CD, Marwick JA, Duffin R, Haslett C, Rossi AG: Cyclin-dependent kinases 7 and 9 specifically regulate neutrophil transcription and their inhibition drives apoptosis to promote resolution of inflammation. Cell Death Differ 2012;19:1950-1961.
[PubMed]
153.
Leitch AE, Riley NA, Sheldrake TA, Festa M, Fox S, Duffin R, Haslett C, Rossi AG: The cyclin-dependent kinase inhibitor R-roscovitine down-regulates Mcl-1 to override pro-inflammatory signalling and drive neutrophil apoptosis. Eur J Immunol 2010;40:1127-1138.
[PubMed]
154.
Jackson RC, Radivoyevitch T: Modelling c-Abl signalling in activated neutrophils: the anti-inflammatory effect of seliciclib. Biodiscovery 2013;7:4.
[PubMed]
155.
Bettayeb K, Baunbæk D, Delehouzé C, Loaëc N, Hole A, Baumli S, Endicott JA, Douc-Rasy S, Bénard J, Oumata N, Galons H, Meijer L: CDK inhibitors roscovitine and CR8 trigger Mcl-1 down-regulation and apoptotic cell death in neuroblastoma cell lines. Genes Cancer 2010;1:369-380.
[PubMed]
156.
Du J, Wei N, Guan T, Xu H, An J, Pritchard KA Jr, Shi Y: Inhibition of CDKs by roscovitine suppressed LPS-induced ∙NO production through inhibiting NFκB activation and BH4 biosynthesis in macrophages. Am J Physiol Cell Physiol 2009;297:C742-C749.
[PubMed]
157.
Jhou RS, Sun KH, Sun GH, Wang HH, Chang CI, Huang HC, Lu SY, Tang SJ: Inhibition of cyclin-dependent kinases by olomoucine and roscovitine reduces lipopolysaccharide-induced inflammatory responses via down-regulation of nuclear factor κB. Cell Prolif 2009;42:141-149.
[PubMed]
158.
Cosimo E, McCaig AM, Carter-Brzezinski LJM, Wheadon H, Leach MT, Lester K, Berthou C, Durieu E, Oumata N, Galons H, Meijer L, Michie AM: Inhibition of NF-κB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes prosurvival stimuli to induce apoptosis in chronic lymphocytic leukemia cells. Clin Cancer Res 2013;19:2393-2405.
[PubMed]
159.
Loynes CA, Martin JS, Robertson A, Trushell DM, Ingham PW, Whyte MK, Renshaw SA: Pivotal advance: pharmacological manipulation of inflammation resolution during spontaneously resolving tissue neutrophilia in the zebrafish. J Leukoc Biol 2010;87:203-212.
[PubMed]
160.
Hall C, Crosier P: Editorial: maintaining the balance - fishing for drugs to treat persistent neutrophilic inflammation. J Leukoc Biol 2010;87:189-191.
[PubMed]
161.
Koedel U, Frankenberg T, Kirschnek S, Obermaier B, Häcker H, Paul R, Häcker G: Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog 2009;5:e1000461.
[PubMed]
162.
Berberich N, Uhl B, Joore J, Schmerwitz UK, Mayer BA, Reichel CA, Krombach F, Zahler S, Vollmar AM, Fürst R: Roscovitine blocks leukocyte extravasation by inhibition of cyclin-dependent kinases 5 and 9. Br J Pharmacol 2011;163:1086-1098.
[PubMed]
163.
Witko-Sarsat V, Halbwachs-Mecarelli L, Schuster A, Nusbaum P, Ueki I, Canteloup S, Lenoir G, Descamps-Latscha B, Nadel JA: Proteinase 3, a potent secretagogue in airways, is present in cystic fibrosis sputum. Am J Respir Cell Mol Biol 1999;20:729-736.
[PubMed]
164.
Witko-Sarsat V, Sermet-Gaudelus I, Lenoir G, Descamps-Latscha B: Inflammation and CFTR: might neutrophils be the key in cystic fibrosis? Mediators Inflamm 1999;8:7-11.
[PubMed]
165.
Gifford AM, Chalmers JD: The role of neutrophils in cystic fibrosis. Curr Opin Hematol 2014;21:16-22.
[PubMed]
166.
Downey DG, Bell SC, Elborn JS: Neutrophils in cystic fibrosis. Thorax 2009;64:81-88.
[PubMed]
167.
Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Döring G: Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 2012;11:363-382.
[PubMed]
168.
Witko-Sarsat V: Neutrophils in the innate immunity conundrum of cystic fibrosis: a CFTR-related matter? J Innate Immun 2013;5:195-196.
[PubMed]
169.
Moriceau S, Kantari C, Mocek J, Davezac N, Gabillet J, Guerrera IC, Brouillard F, Tondelier D, Sermet-Gaudelus I, Danel C, Lenoir G, Daniel S, Edelman A, Witko-Sarsat V: Coronin-1 is associated with neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. J Immunol 2009;182:7254-7263.
[PubMed]
170.
McKeon DJ, Condliffe AM, Cowburn AS, Cadwallader KC, Farahi N, Bilton D, Chilvers ER: Prolonged survival of neutrophils from patients with ΔF508 CFTR mutations. Thorax 2008;63:660-661.
[PubMed]
171.
Moriceau S, Lenoir G, Witko-Sarsat V: In cystic fibrosis homozygotes and heterozygotes, neutrophil apoptosis is delayed and modulated by diamide or roscovitine: evidence for an innate neutrophil disturbance. J Innate Immun 2010;2:260-266.
[PubMed]
172.
Gautam S, Kirschnek S, Wiesmeier M, Vier J, Häcker G: Roscovitine-induced apoptosis in neutrophils and neutrophil progenitors is regulated by the Bcl-2-family members Bim, Puma, Noxa and Mcl-1. PLoS One 2013;8:e79352.
[PubMed]
173.
Dibbert B, Weber M, Nikolaizik WH, Vogt P, Schöni MH, Blaser K, Simon H-U: Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci USA 1999;96:13330-13335.
[PubMed]
174.
Roberts RL, Ank BJ, Stiehm ER: Human eosinophils are more toxic than neutrophils in antibody-independent killing. J Allergy Clin Immunol 1991;87:1105-1115.
[PubMed]
175.
Koller DY, Götz M, Eichler I, Urbanek R: Eosinophilic activation in cystic fibrosis. Thorax 1994;49:496-499.
[PubMed]
176.
Maturu VN, Agarwal R: Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clin Exp Allergy 2015;45:1765-1778.
[PubMed]
177.
Azzawi M, Johnston PW, Majumdar S, Kay AB, Jeffery PK: T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. Am Rev Respir Dis 1992;145:1477-1482.
[PubMed]
178.
Koller DY, Urbanek R, Götz M: Increased degranulation of eosinophil and neutrophil granulocytes in cystic fibrosis. Am J Respir Crit Care Med 1995;152:629-633.
[PubMed]
179.
Koller DY, Nilsson M, Enander I, Venge P, Eichler I: Serum eosinophil cationic protein, eosinophil protein X and eosinophil peroxidase in relation to pulmonary function in cystic fibrosis. Clin Exp Allergy 1998;28:241-248.
[PubMed]
180.
O'Driscoll BR, Cromwell O, Kay AB: Sputum leukotrienes in obstructive airways diseases. Clin Exp Immunol 1984;55:397-404.
[PubMed]
181.
Gleich GJ, Flavahan NA, Fujisawa T, Vanhoutte PM: The eosinophil as a mediator of damage to respiratory epithelium: a model for bronchial hyperreactivity. J Allergy Clin Immunol 1988;81:776-781.
[PubMed]
182.
Halmerbauer G, Arri S, Schierl M, Strauch E, Koller DY: The relationship of eosinophil granule proteins to ions in the sputum of patients with cystic fibrosis. Clin Exp Allergy 2000;30:1771-1776.
[PubMed]
183.
Farahi N, Uller L, Juss JK, Langton AJ, Cowburn AS, Gibson A, Foster MR, Farrow SN, Marco-Casanova P, Sobolewski A, Condliffe AM, Chilvers ER: Effects of the cyclin-dependent kinase inhibitor R-roscovitine on eosinophil survival and clearance. Clin Exp Allergy 2011;41:673-687.
[PubMed]
184.
Odemuyiwa SO, Ilarraza R, Davoine F, Logan MR, Shayeganpour A, Wu Y, Majaesic C, Adamko DJ, Moqbel R, Lacy P: Cyclin-dependent kinase 5 regulates degranulation in human eosinophils. Immunology 2015;144:641-648.
[PubMed]
185.
Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C: Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 2001;276:34199-34205.
[PubMed]
186.
Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C: Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca2+-dependent exocytosis. J Biol Chem 2004;279:29534-29541.
[PubMed]
187.
Duffin R, Leitch AE, Sheldrake TA, Hallett JM, Meyer C, Fox S, Alessandri AL, Martin MC, Brady HJ, Teixeira MM, Dransfield I, Haslett C, Rossi AG: The CDK inhibitor, R-roscovitine, promotes eosinophil apoptosis by down-regulation of Mcl-1. FEBS Lett 2009;583:2540-2546.
[PubMed]
188.
Felton JM, Lucas CD, Rossi AG, Dransfield I: Eosinophils in the lung - modulating apoptosis and efferocytosis in airway inflammation. Front Immunol 2014;5:302.
[PubMed]
189.
Alessandri AL, Duffin R, Leitch AE, Lucas CD, Sheldrake TA, Dorward DA, Hirani N, Pinho V, de Sousa LP, Teixeira MM, Lyons JF, Haslett C, Rossi AG: Induction of eosinophil apoptosis by the cyclin-dependent kinase inhibitor AT7519 promotes the resolution of eosinophil-dominant allergic inflammation. PLoS One 2011;6:e25683.
[PubMed]
190.
Lucas CD, Dorward DA, Sharma S, Rennie J, Felton JM, Alessandri AL, Duffin R, Schwarze J, Haslett C, Rossi AG: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation. Am J Respir Crit Care Med 2015;191:626-636.
[PubMed]
191.
Chang JT, Wherry EJ, Goldrath AW: Molecular regulation of effector and memory T cell differentiation. Nat Immunol 2014;15:1104-1115.
[PubMed]
192.
Zhou L, Chong MM, Littman DR: Plasticity of CD4+ T cell lineage differentiation. Immunity 2009;30:646-655.
[PubMed]
193.
Kleinewietfeld M, Hafler DA: The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol 2013;25:305-312.
[PubMed]
194.
Kushwah R, Gagnon S, Sweezey NB: Intrinsic predisposition of naïve cystic fibrosis T cells to differentiate towards a Th17 phenotype. Respir Res 2013;14:138.
[PubMed]
195.
Mulcahy EM, Hudson JB, Beggs SA, Reid DW, Roddam LF, Cooley MA: High peripheral blood Th17 percent associated with poor lung function in cystic fibrosis. PLoS One 2015;10:e0120912.
[PubMed]
196.
Tiringer K, Treis A, Fucik P, Gona M, Gruber S, Renner S, Dehlink E, Nachbaur E, Horak F, Jaksch P, Döring G, Crameri R, Jung A, Rochat MK, Hörmann M, Spittler A, Klepetko W, Akdis CA, Szépfalusi Z, Frischer T, Eiwegger T: A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2013;187:621-629.
[PubMed]
197.
Tan HL, Regamey N, Brown S, Bush A, Lloyd CM, Davies JC: The Th17 pathway in cystic fibrosis lung disease. Am J Respir Crit Care Med 2011;184:252-258.
[PubMed]
198.
Decraene A, Willems-Widyastuti A, Kasran A, De Boeck K, Bullens DM, Dupont LJ: Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable cystic fibrosis patients. Respir Res 2010;11:177.
[PubMed]
199.
Dubin PJ, McAllister F, Kolls JK: Is cystic fibrosis a TH17 disease? Inflamm Res 2007;56:221-227.
[PubMed]
200.
Iannitti RG, Carvalho A, Cunha C, De Luca A, Giovannini G, Casagrande A, Zelante T, Vacca C, Fallarino F, Puccetti P, Massi-Benedetti C, Defilippi G, Russo M, Porcaro L, Colombo C, Ratclif L, De Benedictis FM, Romani L: Th17/Treg imbalance in murine cystic fibrosis is linked to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. Am J Respir Crit Care Med 2013;187:609-620.
[PubMed]
201.
Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF, Vyas YM, Aujla SJ, Finelli P, Blanchard M, Zeigler SF, Logar A, Hartigan E, Kurs-Lasky M, Rockette H, Ray A, Kolls JK: Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest 2010;120:3242-3254.
[PubMed]
202.
Anil N, Singh M: CD4+CD25high FOXP3+ regulatory T cells correlate with FEV1 in North Indian children with cystic fibrosis. Immunol Invest 2014;43:535-543.
[PubMed]
203.
Hector A, Schäfer H, Pöschel S, Fischer A, Fritzsching B, Ralhan A, Carevic M, Öz H, Zundel S, Hogardt M, Bakele M, Rieber N, Riethmueller J, Graepler-Mainka U, Stahl M, Bender A, Frick JS, Mall M, Hartl D: Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 2015;191:914-923.
[PubMed]
204.
Ziai S, Coriati A, Gauthier MS, Rabasa-Lhoret R, Richter MV: Could T cells be involved in lung deterioration and hyperglycemia in cystic fibrosis? Diabetes Res Clin Pract 2014;105:22-29.
[PubMed]
205.
Robinson KM, Alcorn JF: T-cell immunotherapy in cystic fibrosis: weighing the risk/reward. Am J Respir Crit Care Med 2013;187:564-566.
[PubMed]
206.
Tan HL, Rosenthal M: IL-17 in lung disease: friend or foe? Thorax 2013;68:788-790.
[PubMed]
207.
Yoshida H, Kotani H, Kondo T, Tani I, Wei X, Tsuruta S, Kimura A, Asakawa M, Ito M, Nagai S, Yoshimura A: CDK inhibitors suppress Th17 and promote iTreg differentiation, and ameliorate experimental autoimmune encephalomyelitis in mice. Biochem Biophys Res Commun 2013;435:378-384.
[PubMed]
208.
Zhang Z, Liu Q, Leskov KS, Wu X, Duan J, Zhang GL, Hall M, Rosenbaum JT: Roscovitine suppresses CD4+ T cells and T cell-mediated experimental uveitis. PLoS One 2013;8:e81154.
[PubMed]
209.
Li L, Wang H, Kim JS, Pihan G, Boussiotis V: The cyclin dependent kinase inhibitor (R)-roscovitine prevents alloreactive T cell clonal expansion and protects against acute GvHD. Cell Cycle 2009;8:1794-1802.
[PubMed]
210.
Gu H, Ding L, Xiong SD, Gao XM, Zheng B: Inhibition of CDK2 promotes inducible regulatory T-cell differentiation through TGFβ-Smad3 signaling pathway. Cell Immunol 2014;290:138-144.
[PubMed]
211.
Khor B, Gagnon JD, Goel G, Roche MI, Conway KL, Tran K, Aldrich LN, Sundberg TB, Paterson AM, Mordecai S, Dombkowski D, Schirmer M, Tan PH, Bhan AK, Roychoudhuri R, Restifo NP, O'Shea JJ, Medoff BD, Shamji AF, Schreiber SL, Sharpe AH, Shaw SY, Xavier RJ: The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. Elife 2015;4:e05920.
[PubMed]
212.
Kim ND, Yoon J, Kim JH, Lee JT, Chon YS, Hwang MK, Ha I, Song WJ: Putative therapeutic agents for the learning and memory deficits of people with Down syndrome. Bioorg Med Chem Lett 2006;16:3772-3776.
[PubMed]
213.
Havermans T, Colpaert K, De Boeck K, Dupont L, Abbott J: Pain in CF: review of the literature. J Cyst Fibros 2013;12:423-430.
[PubMed]
214.
Nash EF, Ohri CM, Stephenson AL, Durie PR: Abdominal pain in adults with cystic fibrosis. Eur J Gastroenterol Hepatol 2014;26:129-136.
[PubMed]
215.
Utreras E, Futatsugi A, Pareek TK, Kulkarni AB: Molecular roles of Cdk5 in pain signaling. Drug Discov Today Ther Strateg 2009;6:105-111.
[PubMed]
216.
Pareek TK, Keller J, Kesavapany S, Pant HC, Iadarola MJ, Brady RO, Kulkarni AB: Cyclin-dependent kinase 5 activity regulates pain signaling. Proc Natl Acad Sci USA 2006;103:791-796.
[PubMed]
217.
Prochazkova M, Terse A, Amin ND, Hall B, Utreras E, Pant HC, Kulkarni AB: Activation of cyclin-dependent kinase 5 mediates orofacial mechanical hyperalgesia. Mol Pain 2013;9:66.
[PubMed]
218.
Yang YR, He Y, Zhang Y, Li Y, Li Y, Han Y, Zhu H, Wang Y: Activation of cyclin-dependent kinase 5 (Cdk5) in primary sensory and dorsal horn neurons by peripheral inflammation contributes to heat hyperalgesia. Pain 2007;127:109-120.
[PubMed]
219.
Wang CH, Lee TH, Tsai YJ, Liu JK, Chen YJ, Yang LC, Lu CY: Intrathecal cdk5 inhibitor, roscovitine, attenuates morphine antinociceptive tolerance in rats. Acta Pharmacol Sin 2004;25:1027-1030.
[PubMed]
220.
Fang H, Zhang HH, Yang BX, Huang JL, Shun JL, Kong FJ, Peng X, Chen ZG, Lu JM: Cdk5 contributes to inflammation-induced thermal hyperalgesia mediated by the p38 MAPK pathway in microglia. Brain Res 2015;1619:166-175.
[PubMed]
221.
Zhang HH, Zhang XQ, Wang WY, Xue QS, Lu H, Huang JL, Gui T, Yu BW: Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats. PLoS One 2012;7:e46666.
[PubMed]
222.
Zhang HH, Zhang XQ, Xue QS, Yan L, Huang JL, Zhang S, Shao HJ, Lu H, Wang WY, Yu BW: The BDNF/TrkB signaling pathway is involved in heat hyperalgesia mediated by Cdk5 in rats. PLoS One 2014;9:e85536.
[PubMed]
223.
Zhang X, Zhang H, Shao H, Xue Q, Yu B: ERK MAP kinase activation in spinal cord regulates phosphorylation of Cdk5 at serine 159 and contributes to peripheral inflammation induced pain/hypersensitivity. PLoS One 2014;9:e87788.
[PubMed]
224.
Xing BM, Yang YR, Du JX, Chen HJ, Qi C, Huang ZH, Zhang Y, Wang Y: Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. J Neurosci 2012;32:14709-14721.
[PubMed]
225.
Liu J, Du J, Yang Y, Wang Y: Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol 201;273:253-262.
[PubMed]
226.
Pareek TK, Keller J, Kesavapany S, Agarwal N, Kuner R, Pant HC, Iadarola MJ, Brady RO, Kulkarni AB: Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proc Natl Acad Sci USA 2007;104:660-665.
[PubMed]
227.
Li L, Zhang C, Zi X, Tu Q, Guo K: Epigenetic modulation of Cdk5 contributes to memory deficiency induced by amyloid fibrils. Exp Brain Res 2015;233:165-173.
[PubMed]
228.
Yang L, Gu X, Zhang W, Zhang J, Ma Z: Cdk5 inhibitor roscovitine alleviates neuropathic pain in the dorsal root ganglia by downregulating N-methyl-D-aspartate receptor subunit 2A. Neurol Sci 2014;35:1365-1371.
[PubMed]
229.
Liu X, Liu Y, Zhang J, Zhang W, Sun YE, Gu X, Ma Z: Intrathecal administration of roscovitine prevents remifentanil-induced postoperative hyperalgesia and decreases the phosphorylation of N-methyl-D-aspartate receptor and metabotropic glutamate receptor 5 in spinal cord. Brain Res Bull 2014;106:9-16.
[PubMed]
230.
Zhang R, Liu Y, Zhang J, Zheng Y, Gu X, Ma Z: Intrathecal administration of roscovitine attenuates cancer pain and inhibits the expression of NMDA receptor 2B subunit mRNA. Pharmacol Biochem Behav 2012;102:139-145.
[PubMed]
231.
Wang CH, Chou WY, Hung KS, Jawan B, Lu CN, Liu JK, Hung YP, Lee TH: Intrathecal administration of roscovitine inhibits Cdk5 activity and attenuates formalin-induced nociceptive response in rats. Acta Pharmacol Sin 2005;26:46-50.
[PubMed]
232.
Peng HY, Chen GD, Tung KC, Lai CY, Hsien MC, Chiu CH, Lu HT, Liao JM, Lee SD, Lin TB: Colon mustard oil instillation induced cross-organ reflex sensitization on the pelvic-urethra reflex activity in rats. Pain 2009;142:75-88.
[PubMed]
233.
Evaluation of (R)-roscovitine safety and effects in subjects with cystic fibrosis, homozygous for the F508del-CFTR mutation (ROSCO-CF). https://clinicaltrials.gov/ ct2/show/NCT02649751?term=roscovitine&rank=1.
234.
Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NW, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM: A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 2013;19:939-945.
[PubMed]
235.
Sun X, Olivier AK, Liang B, Yi Y, Sui H, Evans TI, Zhang Y, Zhou W, Tyler SR, Fisher JT, Keiser NW, Liu X, Yan Z, Song Y, Goeken JA, Kinyon JM, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Stewart ZA, Pope RM, Frana T, Meyerholz DK, Parekh K, Engelhardt JF: Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 2014;50:502-512.
[PubMed]
236.
Sun X, Sui H, Fisher JT, Yan Z, Liu X, Cho HJ, Joo NS, Zhang Y, Zhou W, Yi Y, Kinyon JM, Lei-Butters DC, Griffin MA, Naumann P, Luo M, Ascher J, Wang K, Frana T, Wine JJ, Meyerholz DK, Engelhardt JF: Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 2010;120:3149-3160.
[PubMed]
237.
Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB Jr, Engelhardt JF: Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev 2015;26:38-49.
[PubMed]
238.
Harrison F, Muruli A, Higgins S, Diggle SP: Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun 2014;82:3312-3323.
[PubMed]
239.
Kukavica-Ibrulj I, Facchini M, Cigana C, Levesque RC, Bragonzi A: Assessing Pseudomonas aeruginosa virulence and the host response using murine models of acute and chronic lung infection. Methods Mol Biol 2014;1149:757-771.
[PubMed]
240.
Green H, Jones AM: The microbiome and emerging pathogens in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin Respir Crit Care Med 2015;36:225-235.
[PubMed]
241.
Parkins MD, Floto RA: Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros 2015;14:293-304.
[PubMed]
242.
Hill UG, Floto RA, Haworth CS: Non-tuberculous mycobacteria in cystic fibrosis. JR Soc Med 2012;105:S14-S18.
[PubMed]
243.
Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, Colombo C, Davies JC, De Boeck K, Flume PA, Konstan MW, McColley SA, McCoy K, McKone EF, Munck A, Ratjen F, Rowe SM, Waltz D, Boyle MP; TRAFFIC Study Group; TRANSPORT Study Group: Lumacaftoriva- caftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 2015;373:220-231.
[PubMed]
244.
Legraverend M, Grierson DS: The purines: potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg Med Chem 2006;14:3987-4006.
[PubMed]
245.
Sharma S, Mehndiratta S, Yadav S, Singh M, Bedi PM, Nepali K: Purine analogues as kinase inhibitors: a review. Recent Pat Anticancer Drug Discov 2015;10:308-341.
[PubMed]
You do not currently have access to this content.