Invariant natural killer T (iNKT) cells represent a specialized subset of innate lymphocytes that recognize lipid and glycolipid antigens presented to them by nonclassical MHC-I CD1d molecules and are able to rapidly secrete copious amounts of a variety of cytokines. iNKT cells possess the ability to modulate innate as well as adaptive immune responses against various pathogens. Intracellular bacteria are one of the most clinically significant human pathogens that effectively evade the immune system and cause a myriad of diseases of public health concern globally. Emerging evidence suggests that iNKT cells can confer immunity to intracellular bacteria but also inflict pathology in certain cases. We summarize the current knowledge on the contribution of iNKT cells in the host defense against intracellular bacterial infections, with a focus on the underlying mechanisms by which these cells induce protective or pathogenic reactions including the pathways of direct action (acting on infected cells) and indirect action (modulating dendritic, NK and T cells). The rational exploitation of iNKT cells for prophylactic and therapeutic purposes awaits a profound understanding of their functional biology.

1.
Bendelac A, Savage PB, Teyton L: The biology of NKT cells. Annu Rev Immunol 2007;25:297-336.
2.
Godfrey DI, Berzins SP: Control points in NKT-cell development. Nat Rev Immunol 2007;7:505-518.
3.
Morita M, Motoki K, Akimoto K, Natori T, Sakai T, Sawa E, Yamaji K, Koezuka Y, Kobayashi E, Fukushima H: Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 1995;38:2176-2187.
4.
Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg, M: CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998;188:1521-1528.
5.
Spada FM, Koezuka Y, Porcelli SA: CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998;188:1529-1534.
6.
Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M: Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 2000;192:741-754.
7.
Matsuda JL, Gapin L, Fazilleau N, Warren K, Naidenko OV, Kronenberg M: Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor beta repertoire and small clone size. Proc Natl Acad Sci USA 2001;98:12636-12641.
8.
Kinjo Y, Ueno K: iNKT cells in microbial immunity: recognition of microbial glycolipids. Microbiol Immunol 2011;55:472-482.
9.
Peng Y, Zhao L, Shekhar S, Liu L, Wang H, Chen Q, Gao X, Yang X, Zhao W: The glycolipid exoantigen derived from Chlamydia muridarum activates invariant natural killer T cells. Cell Mol Immunol 2012;9:361-366.
10.
Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A: Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005;434:525-529.
11.
Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M: Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005;434:520-525.
12.
Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE: Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 2004;101:10685-10690.
13.
Chen H, Paul WE: Cultured NK1.1+ CD4+ T cells produce large amounts of IL-4 and IFN-gamma upon activation by anti-CD3 or CD1. J Immunol 1997;159:2240-2249.
14.
Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE: Role of NK1.1+ T cells in a Th2 response and in immunoglobulin E production. Science 1995;270:1845-1847.
15.
Kronenberg M: Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005;23:877-900.
16.
Godfrey DI, Stankovic S, Baxter AG: Raising the NKT cell family. Nat Immunol 2010;11:197-206.
17.
Kaufmann SH: Intracellular pathogens: living in an extreme environment. Immunol Rev 2011;240:5-10.
18.
Kaufmann SH: Immunity to intracellular bacteria. Annu Rev Immunol 1993;11:129-163.
19.
Joyee AG, Qiu H, Wang S, Fan Y, Bilenki L, Yang X: Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections. J Immunol 2007;178:1048-1058.
20.
Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM: Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 2008;4:e1000239.
21.
Bessoles S, Dudal S, Besra GS, Sanchez F, Lafont V: Human CD4+ invariant NKT cells are involved in antibacterial immunity against Brucella suis through CD1d-dependent but CD4-independent mechanisms. Eur J Immunol 2009;39:1025-1035.
22.
Ranson T, Bregenholt S, Lehuen A, Gaillot O, Leite-de-Moraes MC, Herbelin A, Berche P, Di Santo JP: Invariant V alpha 14+ NKT cells participate in the early response to enteric Listeria monocytogenes infection. J Immunol 2005;175:1137-1144.
23.
Emoto M, Yoshizawa I, Emoto Y, Miamoto M, Hurwitz R,Kaufmann SH: Rapid development of a gamma interferon-secreting glycolipid/CD1d-specific Valpha14+ NK1.1- T-cell subset after bacterial infection. Infect Immun 2006;74:5903-5913.
24.
Tupin E, Kinjo Y, Kronenberg M: The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol 2007;5:405-417.
25.
Behar SM, Porcelli SA: CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 2007;314:215-250.
26.
Chackerian A, Alt J, Perera V, Behar SM: Activation of NKT cells protects mice from tuberculosis. Infect Immun 2002;70:6302-6309.
27.
Sada-Ovalle I, Skold M, Tian T, Besra GS, Behar SM: Alpha-galactosylceramide as a therapeutic agent for pulmonary Mycobacterium tuberculosis infection. Am J Respir Crit Care Med 2010;182:841-847.
28.
Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L: Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 2005;115:2572-2583.
29.
Hayakawa Y, Berzins SP, Crowe NY, Godfrey DI, Smyth MJ: Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nat Immunol 2004;5:590-596.
30.
Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB: Susceptibility of mice deficient in CD1d or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 1999;189:1973-1980.
31.
D'Souza CD, Cooper AM, Frank AA, Ehlers S, Turner J, Bendelac A, Orme IM: A novel nonclassic beta2-microglobulin-restricted mechanism influencing early lymphocyte accumulation and subsequent resistance to tuberculosis in the lung. Am J Respir Cell Mol Biol 2000;23:188-193.
32.
Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR: Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci USA 2000;97:4204-4208.
33.
Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K, Koguchi Y, Nakayama T, Taniguchi M, Saito A: Minimal contribution of Valpha14 natural killer T cells to Th1 response and host resistance against mycobacterial infection in mice. Microbiol Immunol 2002;46:207-210.
34.
Sugawara I, Yamada H, Mizuno S, Li CY, Nakayama T, Taniguchi M: Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis (Edinb) 2002;82:97-104.
35.
Wang H, Zhao L, Peng Y, Liu J, Qi M, Chen Q, Yang X, Zhao W: Protective role of α-galactosylceramide-stimulated natural killer T cells in genital tract infection with Chlamydia muridarum. FEMS Immunol Med Microbiol 2012;65:43-54.
36.
Bharhani MS, Chiu B, Na KS, Inman RD: Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int Immunol 2009;21:859-870.
37.
Bilenki L, Wang S, Yang J, Fan Y, Joyee AG, Yang X: NK T cell activation promotes Chlamydia trachomatis infection in vivo. J Immunol 2005;175:3197-3206.
38.
Jiang J, Karimi O, Ouburg S, Champion CI, Khurana A, Liu G, Freed A, Pleijster J, Rozengurt N, Land JA, Surcel HM, Tiitinen A, Paavonen J, Kronenberg M, Morre SA, Kelly KA: Interruption of CXCL13-CXCR5 axis increases upper genital tract pathology and activation of NKT cells following chlamydial genital infection. PLoS One 2012;7:e47487.
39.
Hayakawa K, Tateda K, Fuse ET, Matsumoto T, Akasaka Y, Ishii T, Nakayama T, Taniguchi M, Kaku M, Standiford TJ, Yamaguchi K: Paradoxically high resistance of natural killer T (NKT) cell-deficient mice to Legionella pneumophila: another aspect of NKT cells for modulation of host responses. J Med Microbiol 2008;57:1340-1348.
40.
Ishigami M, Nishimura H, Naiki Y, Yoshioka K, Kawano T, Tanaka Y, Taniguchi M, Kakumu S, Yoshikai Y: The roles of intrahepatic Valpha14(+) NK1.1(+) T cells for liver injury induced by Salmonella infection in mice. Hepatology 1999;29:1799-1808.
41.
Berntman E, Rolf J, Johansson C, Anderson P, Cardell SL: The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur J Immunol 2005;35:2100-2109.
42.
Stevenson HL, Crossley EC, Thirumalapura N, Walker DH, Ismail N: Regulatory roles of CD1d-restricted NKT cells in the induction of toxic shock-like syndrome in an animal model of fatal ehrlichiosis. Infect Immun 2008;76:1434-1444.
43.
Montoya CJ, Catano JC, Ramirez Z, Rugeles MT, Wilson SB, Landay AL: Invariant NKT cells from HIV-1 or Mycobacterium tuberculosis-infected patients express an activated phenotype. Clin Immunol 2008;127:1-6.
44.
Snyder-Cappione JE, Nixon DF, Loo CP, Chapman JM, Meiklejohn DA, Melo FF, Costa PR, Sandberg JK, Rodrigues DS, Kallas EG: Individuals with pulmonary tuberculosis have lower levels of circulating CD1d-restricted NKT cells. J Infect Dis 2007;195:1361-1364.
45.
Sutherland JS, Jeffries DJ, Donkor S, Walther B, Hill PC, Adetifa IM, Adegbola RA, Ota MO: High granulocyte/lymphocyte ratio and paucity of NKT cells defines TB disease in a TB-endemic setting. Tuberculosis (Edinb) 2009;89:398-404.
46.
Kee SJ, Kwon YS, Park YW, Cho YN, Lee SJ, Kim TJ, Lee SS, Jang HC, Shin MG, Shin JH, Suh SP, Ryang DW: Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 2012;80:2100-2108.
47.
Barcelos W, Martins-Filho OA, Guimaraes TM, Oliveira MH, Spindola-de-Miranda S, Carvalho BN, Toledo Vde P: Peripheral blood mononuclear cells immunophenotyping in pulmonary tuberculosis patients before and after treatment. Microbiol Immunol 2006;50:597-605.
48.
Al Majid FM, Abba AA: Immunophenotypic characterisation of peripheral T lymphocytes in pulmonary tuberculosis. J Postgrad Med 2008;54:7-11.
49.
Zhang Q, Xiao HP, Cui HY, Sugawara I: Significant increase in natural-killer T cells in patients with tuberculosis complicated by type 2 diabetes mellitus. J Int Med Res 2011;39:105-111.
50.
Kulpraneet M, Sukwit S, Sumransurp K, Chuenchitra T, Santiwatanakul S, Srisurapanon S: Cytokine production in NK and NKT cells from Mycobacterium tuberculosis infected patients. Southeast Asian J Trop Med Public Health 2007;38:370-375.
51.
Zahran WA, Ghonaim MM, Koura BA, El-Banna H, Ali SM, El-Sheikh N: Human natural killer T cells (NKT), NK and T cells in pulmonary tuberculosis: potential indicators for disease activity and prognosis. Egypt J Immunol 2006;13:67-78.
52.
Gumperz JE, Miyake S, Yamamura T, Brenner MB: Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 2002;195:625-636.
53.
Lee PT, Benlagha K, Teyton L, Bendelac A: Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 2002;195:637-641.
54.
Im JS, Kang TJ, Lee SB, Kim CH, Lee SH, Venkataswamy MM, Serfass ER, Chen B, Illarionov PA, Besra GS, Jacobs WR Jr, Chae GT, Porcelli SA: Alteration of the relative levels of iNKT cell subsets is associated with chronic mycobacterial infections. Clin Immunol 2008;127:214-224.
55.
Bessoles S, Dudal S, Besra GS, Sanchez F, Lafont V: Human CD4+ invariant NKT cells are involved in antibacterial immunity against Brucella suis through CD1d-dependent but CD4-independent mechanisms. Eur J Immunol 2009;39:1025-1035.
56.
Gansert JL, Kiessler V, Engele M, Wittke F, Rollinghoff M, Krensky AM, Porcelli SA, Modlin RL, Stenger S: Human NKT cells express granulysin and exhibit antimycobacterial activity. J Immunol 2003;170:3154-3161.
57.
Wilson MT, Johansson C, Olivares-Villagomez D, Singh AK, Stanic AK, Wang CR, Joyce S, Wick MJ, Van Kaer L: The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci USA 2003;100:10913-10918.
58.
Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V: Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to suphatide. J Exp Med 2004;199:947-957.
59.
Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G, Spisek R, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV: Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 2008;112:1308-1316.
60.
Godfrey DI, Rossjohn J: New ways to turn on NKT cells. J Exp Med 2011;208:1121-1125.
61.
Brigl M, Tatituri RV, Watts GF, Bhowruth V, Leadbetter EA, Barton N, Cohen NR, Hsu FF, Besra GS, Brenner MB: Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 2011;208:1163-1177.
62.
Selvanantham T, Escalante NK, Cruz Tleugabulova M, Fiévé S, Girardin SE, Philpott DJ, Mallevaey T: Nod1 and Nod2 enhance TLR-mediated invariant NKT cell activation during bacterial infection. J Immunol 2013;191:5646-5654.
63.
Shimizu H, Matsuguchi T, Fukuda Y, Nakano I, Hayakawa T, Takeuchi O, Akira S, Umemura M, Suda T, Yoshikai Y: Toll-like receptor 2 contributes to liver injury by Salmonella infection through Fas ligand expression on NKT cells in mice. Gastroenterology 2002;123:1265-1277.
64.
Munz C, Steinman RM, Fujii S: Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med 2005;202:203-207.
65.
Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM: Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 2003;198:267-279.
66.
Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V: NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 2003;171:5140-5147.
67.
Hermans IF, Silk JD, Gileadi U, Masri SH, Shepherd D, Farrand KJ, Salio M, Cerundolo V: Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J Immunol 2007;178:2721-2729.
68.
Paget C, Ivanov S, Fontaine J, Blanc F, Pichavant M, Renneson J, Bialecki E, Pothlichet J, Vendeville C, Barba-Spaeth G, Huerre MR, Faveeuw C, Si-Tahar M, Trottein F: Potential role of inavariant NKT cells in the control of pulmonary inflammation and CD8+ T cell response during acute influenza A virus H3N2 pneumonia. J Immunol 2011;186:5590-5602.
69.
Diana J, Griseri T, Lagaye S, Beaudoin L, Autrusseau E, Gautron AS, Tomkiewicz C, Herbelin A, Barouki R, von Herrath M, Dalod M, Lehuen A: NKT cell-plasmacytoid dendritic cell cooperation via Ox40 controls viral infection in a tissue-specific manner. Immunity 2009;30:289-299.
70.
Joyee AG, Qiu H, Fan Y, Wang S, Yang X: Natural killer T cells are critical for dendritic cells to induce immunity in Chlamydial pneumonia. Am J Respir Crit Care Med 2008;178:745-756.
71.
Joyee AG, Uzonna J, Yang X: Invariant NKT cells preferentially modulate the function of CD8 alpha+ dendritic cell subset in inducing type 1 immunity against infection. J Immunol 2010;184:2095-2106.
72.
Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR: Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999;96:1036-1041.
73.
Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thielemans K, Leo O, Urbain J, Moser M: CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999;189:587-592.
74.
Zhao L, Gao X, Peng Y, Joyee AG, Bai H, Wang S, Yang J, Zhao W, Yang X: Differential modulating effect of natural killer (NK) T cells on interferon-γ production and cytotoxic function of NK cells and its relationship with NK subsets in Chlamydia muridarum infection. Immunology 2011;134:172-184.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.