Abstract
The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla (RVLM) in the suppression of baroreflex bradycardia by the parabrachial nucleus (PBN) was investigated. Repeated electrical activation of the PBN increased the concentration of glutamate in the dialysate collected from the RVLM. The same stimulation also suppressed baroreflex bradycardia in response to transient hypertension evoked by phenylephrine (5 μg/kg, intravenously). Microinfusion of L-glutamate (10, 50 or 100 μM) via the microdialysis probe into the RVLM dose-dependently elicited a significant inhibition of baroreflex bradycardia that paralleled the concentration and time course of the PBN-elicited elevation in extracellular glutamate in the RVLM. The suppression of baroreflex bradycardia elicited by microinjection of L-glutamate (1 nmol) into the RVLM was appreciably reversed by coinjection of the NMDA receptor antagonist, dizocilpine (500 pmol), or the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (50 pmol). These results suggest that an increase in the extracellular concentration of glutamate and activation of both NMDA and non-NMDA receptors in the RVLM may mediate the suppression of baroreflex bradycardia by activation of the PBN.