Ribonucleotide reductase (RR) is a key regulatory enzyme in the DNA synthesis pathway and is the target of the cancer chemotherapeutic agent hydroxyurea. The study of RR is significantly hindered by the tedious and labor-intensive nature of enzymatic assay. In this report, we present a novel RR assay in which detection of the deoxyribonucleotides produced by RR occurs via coupling to the DNA polymerase reaction, and is enhanced by using RNase to degrade endogenous RNA. Cell extracts from various cell lines were treated with RNase and then reacted with ATP and radioactive ribonucleotide diphosphate as the substrate. Incorporation of the radioactive substrate [14C]CDP into DNA was linear over 30 min and was linear with the amount of extract, which provided RR activity. The reaction was inhibited by hydroxyurea and required Mg2+ and ATP, suggesting that the assay is specific to RR activity. While RR activities determined by our method and by a conventional method were comparable, this novel method proved to be simpler, faster, more sensitive and less expensive. In addition, assay of the RR activity for multiple samples can easily be performed simultaneously. It is superior to other RR assays in all aspects.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.