Abstract
We have investigated the hypothesis that a lipid-soluble derivative of ascorbic acid, ascorbyl-6-palmitate (AP), could serve as a carrier of ascorbate into neural tissues. Ascorbate could then exert its physiological effects in the biomembranes that are the target sites of the cellular signaling pathways which are normally hardly accessible to this water-soluble compound. The potential role of AP would require that it penetrates into tissues. The major objective of the study was to determine whether ascorbate could be recovered from cerebral cortex and carotid body tissues, both sensitive to the hypoxic stimulus, after AP given by gavage. Biological samples were analyzed by HPLC for the determination of ascorbate. We found that ascorbate was recovered from the tissues studied. Its content was higher in both tissues, by nearly an order of magnitude, after ingestion of AP than after ingestion of ascorbic acid, and the ascorbate level was higher in the carotid body than in the cortex. Hypoxia decreased the ascorbate content which implies physiological activity of ascorbate carried alongside the AP molecule. The lipophilic AP was able to cross biological barriers and satisfied the tissue demand for ascorbate better than the hydrophilic form. AP should be considered as the preferred form of transport of ascorbate into neural tissues. The results of this study suggest wider pharmacological applications of ascorbyl palmitate.