The principal sulfatide of virulent Mycobacterium tuberculosis, sulfolipid-I(SL-I), both directly stimulates neutrophil superoxide (O(2)) release and, at substimulatory concentrations, primes these cells for markedly enhanced oxidative responsiveness to other stimuli. The present study was undertaken to clarify the priming mechanisms by comparing cellular events following priming doses of SL-I with those following priming with N-formyl-methionyl-leucylphenylalanine(FMLP). We compared the involvement of the calcium cation(Ca^2+), as well as membrane protein kinase C (PKC) activity and the translocation of NADPH oxidase-cytosolic cofactor effected by priming levels of the two agonists. The investigation led to two important conclusions. First, we clearly demonstrate that priming by both SL-I and FMLP results from activation of cellular processes that are not involved in direct oxidative activation. For example, whereas direct induction of O(2) generation by FMLP and SL-I required increases in intracellular Ca^2+, an increase in intracellular calcium concentration ([Ca^2+]i) above basal levels was not required for priming. Second,we identified key differences in the cellular responses to priming doses of SL-I and FMLP. Whereas increased membrane PKC activity caused by priming doses of FMLP was only partially blocked by chelation of intracellular Ca^2+, Ca^2+ chelation completely inhibited the increase in membrane PKC activity caused by SL-I. NADPH oxidase-cytosolic factor translocation to plasma membranes was completely blocked by pertussis toxin when priming doses of SL-I were used. This guanine-nucleotide-binding protein inhibitor had no effect on FMLP-dependent translocation of the oxidase cofactors. The comparative approach introduced in this report provides a valuable and novel method to discern the complex interactions of various cellular processes that regulate the state of activation of stimulated cells.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.