Mosquitoes are considered the most important vectors for the transmission of pathogens to humans. Aedes aegypti is a unique species, not only by its highly anthropophilic and peridomestic habits but also because it can transmit an important variety of pathogenic viruses. Examples are dengue, yellow fever, chikungunya, Zika, and Mayaro viruses. After ingesting viremic blood, a wide range of mechanisms are activated in the mosquito to counteract viral infection. Nevertheless, these arboviruses possess strategies to overcome barriers in the mosquito and eventually reach the salivary glands to continue the transmission cycle. However, the infection and eventual transmission of arbovirus depends on multiple factors. The current review focuses in detail on the anatomic, physiological, and molecular characteristics of the mosquito A. aegypti that participate in response to a viral infection. In the past decades, the awareness of the importance of this mosquito as a disease vector and its impact on human health was largely recognized. We need to improve our comprehension of molecular mechanisms that determine the outcome of successful virus replication or control of infection for each arbovirus in the vector; this could lead to the design of effective control strategies in the future.

1.
Dalziel
BD
,
Huang
K
,
Geoghegan
JL
,
Arinaminpathy
N
,
Dubovi
EJ
,
Grenfell
BT
, et al.
Contact heterogeneity, rather than transmission efficiency, limits the emergence and spread of canine influenza virus
.
PLoS Pathog
.
2014
Oct
;
10
(
10
):
e1004455
.
[PubMed]
1553-7366
2.
Le Coupanec
A
,
Tchankouo-Nguetcheu
S
,
Roux
P
,
Khun
H
,
Huerre
M
,
Morales-Vargas
R
, et al.
Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes
.
Int J Mol Sci
.
2017
Aug
;
18
(
8
):
E1708
.
[PubMed]
1661-6596
3.
Walker
T
,
Jeffries
CL
,
Mansfield
KL
,
Johnson
N
.
Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom
.
Parasit Vectors
.
2014
Aug
;
7
(
1
):
382
.
[PubMed]
1756-3305
4.
Go
YY
,
Balasuriya
UB
,
Lee
CK
.
Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses
.
Clin Exp Vaccine Res
.
2014
Jan
;
3
(
1
):
58
77
.
[PubMed]
2287-3651
5.
Lequime
S
,
Lambrechts
L
.
Vertical transmission of arboviruses in mosquitoes: a historical perspective
.
Infect Genet Evol
.
2014
Dec
;
28
:
681
90
.
[PubMed]
1567-1348
6.
Fansiri
T
,
Fontaine
A
,
Diancourt
L
,
Caro
V
,
Thaisomboonsuk
B
,
Richardson
JH
, et al.
Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses
.
PLoS Genet
.
2013
;
9
(
8
):
e1003621
.
[PubMed]
1553-7390
7.
Klitting
R
,
Gould
EA
,
de Lamballerie
X
.
G+C content differs in conserved and variable amino acid residues of flaviviruses and other evolutionary groups
.
Infect Genet Evol
.
2016
Nov
;
45
:
332
40
.
[PubMed]
1567-1348
8.
Lobo
FP
,
Mota
BE
,
Pena
SD
,
Azevedo
V
,
Macedo
AM
,
Tauch
A
, et al.
Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts
.
PLoS One
.
2009
Jul
;
4
(
7
):
e6282
.
[PubMed]
1932-6203
9.
Grubaugh
ND
,
Weger-Lucarelli
J
,
Murrieta
RA
,
Fauver
JR
,
Garcia-Luna
SM
,
Prasad
AN
, et al.
Genetic Drift during Systemic Arbovirus Infection of Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching
.
Cell Host Microbe
.
2016
Apr
;
19
(
4
):
481
92
.
[PubMed]
1931-3128
10.
Collins
MH
,
Metz
SW
.
Progress and Works in Progress: Update on Flavivirus Vaccine Development
.
Clin Ther
.
2017
Aug
;
39
(
8
):
1519
36
.
[PubMed]
0149-2918
11.
Liu
Y
,
Liu
J
,
Cheng
G
.
Vaccines and immunization strategies for dengue prevention
.
Emerg Microbes Infect
.
2016
Jul
;
5
(
7
):
e77
.
[PubMed]
2222-1751
12.
Rezza
G
.
Dengue and other Aedes-borne viruses: a threat to Europe?
Euro Surveill
.
2016
May
;
21
(
21
):
30238
.
[PubMed]
1025-496X
13.
Colpitts
TM
,
Conway
MJ
,
Montgomery
RR
,
Fikrig
E
.
West Nile Virus: biology, transmission, and human infection
.
Clin Microbiol Rev
.
2012
Oct
;
25
(
4
):
635
48
.
[PubMed]
0893-8512
14.
Marinho
MC
, et al.
Quantitative gingival crevicular fluid proteome in type 2 diabetes mellitus and chronic periodontitis
.
Oral Dis
.
2018
.
[PubMed]
1354-523X
15.
Balenghien
T
,
Cardinale
E
,
Chevalier
V
,
Elissa
N
,
Failloux
AB
,
Jean Jose Nipomichene
TN
, et al.
Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean
.
Vet Res (Faisalabad)
.
2013
Sep
;
44
(
1
):
78
.
[PubMed]
1993-5412
16.
Gutiérrez-Bugallo
G
,
Rodriguez-Roche
R
,
Díaz
G
,
Vázquez
AA
,
Alvarez
M
,
Rodríguez
M
, et al.
First record of natural vertical transmission of dengue virus in Aedes aegypti from Cuba
.
Acta Trop
.
2017
Oct
;
174
:
146
8
.
[PubMed]
0001-706X
17.
da Costa
CF
,
da Silva
AV
,
do Nascimento
VA
,
de Souza
VC
,
Monteiro
DC
,
Terrazas
WC
, et al.
Evidence of vertical transmission of Zika virus in field-collected eggs of Aedes aegypti in the Brazilian Amazon
.
PLoS Negl Trop Dis
.
2018
Jul
;
12
(
7
):
e0006594
.
[PubMed]
1935-2727
18.
Sánchez-Vargas
I
,
Harrington
LC
,
Doty
JB
,
Black
WC
 4th
,
Olson
KE
.
Demonstration of efficient vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti
.
PLoS Negl Trop Dis
.
2018
Aug
;
12
(
8
):
e0006754
.
[PubMed]
1935-2727
19.
Ciota
AT
,
Bialosuknia
SM
,
Ehrbar
DJ
,
Kramer
LD
.
Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes
.
Emerg Infect Dis
.
2017
May
;
23
(
5
):
880
2
.
[PubMed]
1080-6040
20.
Ferreira-de-Lima
VH
,
Lima-Camara
TN
.
Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review
.
Parasit Vectors
.
2018
Feb
;
11
(
1
):
77
.
[PubMed]
1756-3305
21.
Chompoosri
J
,
Thavara
U
,
Tawatsin
A
,
Boonserm
R
,
Phumee
A
,
Sangkitporn
S
, et al.
Vertical transmission of Indian Ocean Lineage of chikungunya virus in Aedes aegypti and Aedes albopictus mosquitoes
.
Parasit Vectors
.
2016
Apr
;
9
(
1
):
227
.
[PubMed]
1756-3305
22.
Jain
J
,
Kushwah
RB
,
Singh
SS
,
Sharma
A
,
Adak
T
,
Singh
OP
, et al.
Evidence for natural vertical transmission of chikungunya viruses in field populations of Aedes aegypti in Delhi and Haryana states in India-a preliminary report
.
Acta Trop
.
2016
Oct
;
162
:
46
55
.
[PubMed]
0001-706X
23.
Dzul-Manzanilla
F
,
Martínez
NE
,
Cruz-Nolasco
M
,
Gutiérrez-Castro
C
,
López-Damián
L
,
Ibarra-López
J
, et al.
Evidence of vertical transmission and co-circulation of chikungunya and dengue viruses in field populations of Aedes aegypti (L.) from Guerrero, Mexico
.
Trans R Soc Trop Med Hyg
.
2016
Feb
;
110
(
2
):
141
4
.
[PubMed]
1878-3503
24.
Agarwal
A
,
Dash
PK
,
Singh
AK
,
Sharma
S
,
Gopalan
N
,
Rao
PV
, et al.
Evidence of experimental vertical transmission of emerging novel ECSA genotype of Chikungunya Virus in Aedes aegypti
.
PLoS Negl Trop Dis
.
2014
Jul
;
8
(
7
):
e2990
.
[PubMed]
1935-2727
25.
Long
KC
,
Ziegler
SA
,
Thangamani
S
,
Hausser
NL
,
Kochel
TJ
,
Higgs
S
, et al.
Experimental transmission of Mayaro virus by Aedes aegypti
.
Am J Trop Med Hyg
.
2011
Oct
;
85
(
4
):
750
7
.
[PubMed]
0002-9637
26.
Dimmock
NJ
,
Easton
AJ
,
Leppard
KN
.
Introduction to Modern Virology.
Sixth Edition ed.
2007
: Blackwell Publishing.
27.
Grove
J
,
Marsh
M
.
The cell biology of receptor-mediated virus entry
.
J Cell Biol
.
2011
Dec
;
195
(
7
):
1071
82
.
[PubMed]
0021-9525
28.
Cruz-Oliveira
,
C.
, et al.
,
Receptors and routes of dengue virus entry into the host cells.
2015
. 39(2): p. 155-170.
29.
Reyes-del Valle
J
,
Salas-Benito
J
,
Soto-Acosta
R
,
del Angel
RM
.
Dengue Virus Cellular Receptors and Tropism
.
Curr Trop Med Rep
.
2014
;
1
(
1
):
36
43
. 2196-3045
30.
Smith
DR
.
An update on mosquito cell expressed dengue virus receptor proteins
.
Insect Mol Biol
.
2012
Feb
;
21
(
1
):
1
7
.
[PubMed]
0962-1075
31.
Mourya
DT
,
Ranadive
SN
,
Gokhale
MD
,
Barde
PV
,
Padbidri
VS
,
Banerjee
K
.
Putative chikungunya virus-specific receptor proteins on the midgut brush border membrane of Aedes aegypti mosquito
.
Indian J Med Res
.
1998
Jan
;
107
:
10
4
.
[PubMed]
0971-5916
32.
Salazar
MI
,
Richardson
JH
,
Sánchez-Vargas
I
,
Olson
KE
,
Beaty
BJ
.
Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes
.
BMC Microbiol
.
2007
Jan
;
7
(
1
):
9
.
[PubMed]
1471-2180
33.
Dong
S
,
Balaraman
V
,
Kantor
AM
,
Lin
J
,
Grant
DG
,
Held
NL
, et al.
Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion
.
PLoS Negl Trop Dis
.
2017
Sep
;
11
(
9
):
e0005976
.
[PubMed]
1935-2727
34.
Myles
KM
,
Pierro
DJ
,
Olson
KE
.
Comparison of the transmission potential of two genetically distinct Sindbis viruses after oral infection of Aedes aegypti (Diptera: culicidae)
.
J Med Entomol
.
2004
Jan
;
41
(
1
):
95
106
.
[PubMed]
0022-2585
35.
Carrington
LB
,
Simmons
CP
.
Human to mosquito transmission of dengue viruses
.
Front Immunol
.
2014
Jun
;
5
:
290
.
[PubMed]
1664-3224
36.
Isabel Salazar
M
.
M.A.L.-P., José Arturo Farfán-Ale, Ken E. Olson, Barry J., American and American/Asian genotypes of dengue virus differ in mosquito infection efficiency: candidate molecular determinants of productive vector infection
.
Rev Biomed
.
2010
;
21
:
121
35
.
37.
Coffey
LL
,
Failloux
AB
,
Weaver
SC
.
Chikungunya virus-vector interactions
.
Viruses
.
2014
Nov
;
6
(
11
):
4628
63
.
[PubMed]
1999-4915
38.
Parikh
G
.
Cell biology of pathogen-hemocyte interactions in the mosquito innate immune response
.
Entomology Commons
;
2011
. p.
12164
.
39.
Carrington
LB
,
Seifert
SN
,
Armijos
MV
,
Lambrechts
L
,
Scott
TW
.
Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations
.
Am J Trop Med Hyg
.
2013
Apr
;
88
(
4
):
689
97
.
[PubMed]
0002-9637
40.
Richardson
K
,
Hoffmann
AA
,
Johnson
P
,
Ritchie
S
,
Kearney
MR
.
Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution
.
J Med Entomol
.
2011
Jul
;
48
(
4
):
914
23
.
[PubMed]
0022-2585
41.
Watts
DM
,
Burke
DS
,
Harrison
BA
,
Whitmire
RE
,
Nisalak
A
.
Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus
.
Am J Trop Med Hyg
.
1987
Jan
;
36
(
1
):
143
52
.
[PubMed]
0002-9637
42.
Dubrulle
M
,
Mousson
L
,
Moutailler
S
,
Vazeille
M
,
Failloux
AB
.
Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection
.
PLoS One
.
2009
Jun
;
4
(
6
):
e5895
.
[PubMed]
1932-6203
43.
McElroy
KL
,
Girard
YA
,
McGee
CE
,
Tsetsarkin
KA
,
Vanlandingham
DL
,
Higgs
S
.
Characterization of the antigen distribution and tissue tropisms of three phenotypically distinct yellow fever virus variants in orally infected Aedes aegypti mosquitoes
.
Vector Borne Zoonotic Dis
.
2008
Oct
;
8
(
5
):
675
87
.
[PubMed]
1530-3667
44.
Chouin-Carneiro
T
,
Vega-Rua
A
,
Vazeille
M
,
Yebakima
A
,
Girod
R
,
Goindin
D
, et al.
Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus
.
PLoS Negl Trop Dis
.
2016
Mar
;
10
(
3
):
e0004543
.
[PubMed]
1935-2727
45.
Putnam
JL
,
Scott
TW
.
Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti
.
Am J Trop Med Hyg
.
1995
Mar
;
52
(
3
):
225
7
.
[PubMed]
0002-9637
46.
Sim
S
,
Ramirez
JL
,
Dimopoulos
G
.
Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior
.
PLoS Pathog
.
2012
;
8
(
3
):
e1002631
.
[PubMed]
1553-7366
47.
Padilha
KP
,
Resck
ME
,
Cunha
OA
,
Teles-de-Freitas
R
,
Campos
SS
,
Sorgine
MH
, et al.
Zika infection decreases Aedes aegypti locomotor activity but does not influence egg production or viability
.
Mem Inst Oswaldo Cruz
.
2018
Aug
;
113
(
10
):
e180290
.
[PubMed]
0074-0276
48.
Gaburro
J
,
Bhatti
A
,
Harper
J
,
Jeanne
I
,
Dearnley
M
,
Green
D
, et al.
Neurotropism and behavioral changes associated with Zika infection in the vector Aedes aegypti
.
Emerg Microbes Infect
.
2018
Apr
;
7
(
1
):
68
.
[PubMed]
2222-1751
49.
Barón
OL
,
Ursic-Bedoya
RJ
,
Lowenberger
CA
,
Ocampo
CB
.
Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus
.
J Insect Sci
.
2010
;
10
(
41
):
41
.
[PubMed]
1536-2442
50.
Sim
S
,
Dimopoulos
G
.
Dengue virus inhibits immune responses in Aedes aegypti cells
.
PLoS One
.
2010
May
;
5
(
5
):
e10678
.
[PubMed]
1932-6203
51.
Severson
DW
,
Behura
SK
.
Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches
.
Insects
.
2016
Oct
;
7
(
4
):
E58
.
[PubMed]
2075-4450
52.
Behura
SK
,
Gomez-Machorro
C
,
deBruyn
B
,
Lovin
DD
,
Harker
BW
,
Romero-Severson
J
, et al.
Influence of mosquito genotype on transcriptional response to dengue virus infection
.
Funct Integr Genomics
.
2014
Sep
;
14
(
3
):
581
9
.
[PubMed]
1438-793X
53.
Eng
MW
,
van Zuylen
MN
,
Severson
DW
.
Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti
.
Insect Biochem Mol Biol
.
2016
Sep
;
76
:
70
83
.
[PubMed]
0965-1748
54.
Dennison
NJ
,
Jupatanakul
N
,
Dimopoulos
G
.
The mosquito microbiota influences vector competence for human pathogens
.
Curr Opin Insect Sci
.
2014
Sep
;
3
:
6
13
.
[PubMed]
2214-5745
55.
Jupatanakul
N
,
Sim
S
,
Dimopoulos
G
.
The insect microbiome modulates vector competence for arboviruses
.
Viruses
.
2014
Nov
;
6
(
11
):
4294
313
.
[PubMed]
1999-4915
56.
Apte-Deshpande
AD
,
Paingankar
MS
,
Gokhale
MD
,
Deobagkar
DN
.
Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus
.
Indian J Med Res
.
2014
May
;
139
(
5
):
762
8
.
[PubMed]
0971-5916
57.
Angleró-Rodríguez
YI
,
Talyuli
OA
,
Blumberg
BJ
,
Kang
S
,
Demby
C
,
Shields
A
, et al.
An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity
.
eLife
.
2017
Dec
;
6
:
6
.
[PubMed]
2050-084X
58.
Terradas
G
,
Allen
SL
,
Chenoweth
SF
,
McGraw
EA
.
Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti
.
Parasit Vectors
.
2017
Dec
;
10
(
1
):
622
.
[PubMed]
1756-3305
59.
Xue
L
,
Fang
X
,
Hyman
JM
.
Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika
.
PLoS Negl Trop Dis
.
2018
Jul
;
12
(
7
):
e0006666
.
[PubMed]
1935-2727
60.
Behura
SK
,
Gomez-Machorro
C
,
Harker
BW
,
deBruyn
B
,
Lovin
DD
,
Hemme
RR
, et al.
Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection
.
PLoS Negl Trop Dis
.
2011
Nov
;
5
(
11
):
e1385
.
[PubMed]
1935-2727
61.
Ocampo
CB
,
Caicedo
PA
,
Jaramillo
G
,
Ursic Bedoya
R
,
Baron
O
,
Serrato
IM
, et al.
Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus
.
PLoS One
.
2013
Apr
;
8
(
4
):
e61187
.
[PubMed]
1932-6203
62.
Taracena
ML
,
Bottino-Rojas
V
,
Talyuli
OA
,
Walter-Nuno
AB
,
Oliveira
JH
,
Angleró-Rodriguez
YI
, et al.
Regulation of midgut cell proliferation impacts Aedes aegypti susceptibility to dengue virus
.
PLoS Negl Trop Dis
.
2018
May
;
12
(
5
):
e0006498
.
[PubMed]
1935-2727
63.
Colpitts
TM
,
Cox
J
,
Vanlandingham
DL
,
Feitosa
FM
,
Cheng
G
,
Kurscheid
S
, et al.
Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses
.
PLoS Pathog
.
2011
Sep
;
7
(
9
):
e1002189
.
[PubMed]
1553-7366
64.
Franz
AW
,
Kantor
AM
,
Passarelli
AL
,
Clem
RJ
.
Tissue Barriers to Arbovirus Infection in Mosquitoes
.
Viruses
.
2015
Jul
;
7
(
7
):
3741
67
.
[PubMed]
1999-4915
65.
Bennett
KE
,
Olson
KE
,
Muñoz
ML
,
Fernandez-Salas
I
,
Farfan-Ale
JA
,
Higgs
S
, et al.
Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States
.
Am J Trop Med Hyg
.
2002
Jul
;
67
(
1
):
85
92
.
[PubMed]
0002-9637
66.
Rückert
C
,
Bell-Sakyi
L
,
Fazakerley
JK
,
Fragkoudis
R
.
Antiviral responses of arthropod vectors: an update on recent advances
.
Virusdisease
.
2014
;
25
(
3
):
249
60
.
[PubMed]
2347-3584
67.
Whitehorn
J
,
Simmons
CP
.
The pathogenesis of dengue
.
Vaccine
.
2011
Sep
;
29
(
42
):
7221
8
.
[PubMed]
0264-410X
68.
Araújo
HC
,
Cavalcanti
MG
,
Santos
SS
,
Alves
LC
,
Brayner
FA
.
Hemocytes ultrastructure of Aedes aegypti (Diptera: culicidae)
.
Micron
.
2008
;
39
(
2
):
184
9
.
[PubMed]
0968-4328
69.
Choi
YJ
,
Fuchs
JF
,
Mayhew
GF
,
Yu
HE
,
Christensen
BM
.
Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection
.
Insect Biochem Mol Biol
.
2012
Oct
;
42
(
10
):
729
38
.
[PubMed]
0965-1748
70.
Krzemien
J
,
Crozatier
M
,
Vincent
A
.
Ontogeny of the Drosophila larval hematopoietic organ, hemocyte homeostasis and the dedicated cellular immune response to parasitism
.
Int J Dev Biol
.
2010
;
54
(
6-7
):
1117
25
.
[PubMed]
0214-6282
71.
Cirimotich
CM
,
Dong
Y
,
Garver
LS
,
Sim
S
,
Dimopoulos
G
.
Mosquito immune defenses against Plasmodium infection
.
Dev Comp Immunol
.
2010
Apr
;
34
(
4
):
387
95
.
[PubMed]
0145-305X
72.
Agaisse
H
,
Perrimon
N
.
The roles of JAK/STAT signaling in Drosophila immune responses
.
Immunol Rev
.
2004
Apr
;
198
(
1
):
72
82
.
[PubMed]
0105-2896
73.
Antonova
Y
,
Alvarez
KS
,
Kim
YJ
,
Kokoza
V
,
Raikhel
AS
.
The role of NF-kappaB factor REL2 in the Aedes aegypti immune response
.
Insect Biochem Mol Biol
.
2009
Apr
;
39
(
4
):
303
14
.
[PubMed]
0965-1748
74.
Mukherjee
S
,
Hanley
KA
.
RNA interference modulates replication of dengue virus in Drosophila melanogaster cells
.
BMC Microbiol
.
2010
Apr
;
10
(
1
):
127
.
[PubMed]
1471-2180
75.
Olson
KE
,
Blair
CD
.
Arbovirus-mosquito interactions: RNAi pathway
.
Curr Opin Virol
.
2015
Dec
;
15
:
119
26
.
[PubMed]
1879-6257
76.
Sánchez-Vargas
I
,
Scott
JC
,
Poole-Smith
BK
,
Franz
AW
,
Barbosa-Solomieu
V
,
Wilusz
J
, et al.
Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway
.
PLoS Pathog
.
2009
Feb
;
5
(
2
):
e1000299
.
[PubMed]
1553-7366
77.
Varjak
M
,
Maringer
K
,
Watson
M
,
Sreenu
VB
,
Fredericks
AC
,
Pondeville
E
, et al.
Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses
.
MSphere
.
2017
May
;
2
(
3
):
e00144-17
.
[PubMed]
2379-5042
78.
Lee
M
,
Etebari
K
,
Hall-Mendelin
S
,
van den Hurk
AF
,
Hobson-Peters
J
,
Vatipally
S
, et al.
Understanding the role of microRNAs in the interaction of Aedes aegypti mosquitoes with an insect-specific flavivirus
.
J Gen Virol
.
2017
Jul
;
98
(
7
):
1892
903
.
[PubMed]
0022-1317
79.
Joubert
DA
,
Walker
T
,
Carrington
LB
,
De Bruyne
JT
,
Kien
DH
,
Hoang
NT
, et al.
Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management
.
PLoS Pathog
.
2016
Feb
;
12
(
2
):
e1005434
.
[PubMed]
1553-7366
80.
Zhang
G
,
Hussain
M
,
Asgari
S
.
Regulation of arginine methyltransferase 3 by a Wolbachia-induced microRNA in Aedes aegypti and its effect on Wolbachia and dengue virus replication
.
Insect Biochem Mol Biol
.
2014
Oct
;
53
:
81
8
.
[PubMed]
0965-1748
81.
Ramirez
JL
,
Dimopoulos
G
.
The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes
.
Dev Comp Immunol
.
2010
Jun
;
34
(
6
):
625
9
.
[PubMed]
0145-305X
82.
Liu
T
,
Xu
Y
,
Wang
X
,
Gu
J
,
Yan
G
,
Chen
XG
.
Antiviral systems in vector mosquitoes
.
Dev Comp Immunol
.
2018
Jun
;
83
:
34
43
.
[PubMed]
0145-305X
83.
Barletta
AB
,
Nascimento-Silva
MC
,
Talyuli
OA
,
Oliveira
JH
,
Pereira
LO
,
Oliveira
PL
, et al.
Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti
.
Parasit Vectors
.
2017
Feb
;
10
(
1
):
103
.
[PubMed]
1756-3305
84.
Pan
X
,
Pike
A
,
Joshi
D
,
Bian
G
,
McFadden
MJ
,
Lu
P
, et al.
The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti
.
ISME J
.
2018
Jan
;
12
(
1
):
277
88
.
[PubMed]
1751-7362
85.
Paradkar
PN
,
Duchemin
JB
,
Voysey
R
,
Walker
PJ
.
Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway
.
PLoS Negl Trop Dis
.
2014
Apr
;
8
(
4
):
e2823
.
[PubMed]
1935-2727
86.
Paradkar
PN
,
Trinidad
L
,
Voysey
R
,
Duchemin
JB
,
Walker
PJ
.
Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway
.
Proc Natl Acad Sci USA
.
2012
Nov
;
109
(
46
):
18915
20
.
[PubMed]
0027-8424
87.
Huang
Z
,
Kingsolver
MB
,
Avadhanula
V
,
Hardy
RW
.
An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication
.
J Virol
.
2013
Apr
;
87
(
8
):
4272
80
.
[PubMed]
0022-538X
88.
Zhang
R
,
Zhu
Y
,
Pang
X
,
Xiao
X
,
Zhang
R
,
Cheng
G
.
Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells
.
Front Cell Infect Microbiol
.
2017
Feb
;
7
:
22
.
[PubMed]
2235-2988
89.
Jupatanakul
N
,
Sim
S
,
Angleró-Rodríguez
YI
,
Souza-Neto
J
,
Das
S
,
Poti
KE
, et al.
Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus
.
PLoS Negl Trop Dis
.
2017
Jan
;
11
(
1
):
e0005187
.
[PubMed]
1935-2727
90.
Angleró-Rodríguez
YI
,
MacLeod
HJ
,
Kang
S
,
Carlson
JS
,
Jupatanakul
N
,
Dimopoulos
G
.
Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors
.
Front Microbiol
.
2017
Oct
;
8
:
2050
.
[PubMed]
1664-302X
91.
Oliveira
JH
,
Talyuli
OA
,
Goncalves
RL
,
Paiva-Silva
GO
,
Sorgine
MH
,
Alvarenga
PH
, et al.
Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika
.
PLoS Negl Trop Dis
.
2017
Apr
;
11
(
4
):
e0005525
.
[PubMed]
1935-2727
92.
Shrinet
J
,
Bhavesh
NS
,
Sunil
S
.
Understanding Oxidative Stress in Aedes during Chikungunya and Dengue Virus Infections Using Integromics Analysis
.
Viruses
.
2018
Jun
;
10
(
6
):
E314
.
[PubMed]
1999-4915
93.
Goic
B
,
Stapleford
KA
,
Frangeul
L
,
Doucet
AJ
,
Gausson
V
,
Blanc
H
, et al.
Virus-derived DNA drives mosquito vector tolerance to arboviral infection
.
Nat Commun
.
2016
Sep
;
7
(
1
):
12410
.
[PubMed]
2041-1723
94.
Chepkorir
E
,
Lutomiah
J
,
Mutisya
J
,
Mulwa
F
,
Limbaso
K
,
Orindi
B
, et al.
Vector competence of Aedes aegypti populations from Kilifi and Nairobi for dengue 2 virus and the influence of temperature
.
Parasit Vectors
.
2014
Sep
;
7
(
1
):
435
.
[PubMed]
1756-3305
95.
Tsetsarkin
KA
,
Weaver
SC
.
Sequential adaptive mutations enhance efficient vector switching by Chikungunya virus and its epidemic emergence
.
PLoS Pathog
.
2011
Dec
;
7
(
12
):
e1002412
.
[PubMed]
1553-7366
96.
Etebari
K
,
Hegde
S
,
Saldaña
MA
,
Widen
SG
,
Wood
TG
,
Asgari
S
, et al.
Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection
.
MSphere
.
2017
Nov
;
2
(
6
):
e00456-17
.
[PubMed]
2379-5042
97.
Waterhouse
RM
,
Kriventseva
EV
,
Meister
S
,
Xi
Z
,
Alvarez
KS
,
Bartholomay
LC
, et al.
Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes
.
Science
.
2007
Jun
;
316
(
5832
):
1738
43
.
[PubMed]
0036-8075
98.
Shrinet
J
,
Srivastava
P
,
Sunil
S
.
Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus
.
Biochem Biophys Res Commun
.
2017
Oct
;
492
(
4
):
617
23
.
[PubMed]
0006-291X
99.
Rückert
C
,
Weger-Lucarelli
J
,
Garcia-Luna
SM
,
Young
MC
,
Byas
AD
,
Murrieta
RA
, et al.
Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes
.
Nat Commun
.
2017
May
;
8
:
15412
.
[PubMed]
2041-1723
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.