Abstract
The use of bleach (hypochlorite) as a disinfectant for drug injection equipment in the intravenous-drug-using population was recommended early in the HIV-1/AIDS epidemic. Epidemiological studies have challenged the use of bleach as an effective measure to prevent HIV-1 transmission. However, in vitro HIV-1 coculture studies have shown that a high concentration of bleach is an effective cytotoxic and potentially virucidal agent. In this study, we demonstrate that HIV-1 peripheral blood mononuclear cell cocultures containing low concentrations of hypochlorite in the media showed earlier conversion to HIV-1 positivity, as measured by the presence of p24 antigen. HIV-1 cocultures with high concentrations of hypochlorite in the culture media, which appeared to be highly cytotoxic, and HIV-1 cocultures without bleach in the media did not exhibit this early p24 antigen positivity. Hypochlorite chemically disinfects by releasing free chlorine that is a potent oxidant. In injection drug equipment, a low residual concentration of bleach is likely to remain in cleaned equipment despite rinsing with water. Low concentrations of oxidants have been shown to enhance tissue inflammation, in vivo, as well as HIV-1 replication in vitro. Previous studies have shown that despite vigorous cleaning of blood-contaminated injection syringes with bleach followed by water, microaggregates of residual blood remained in bleach-cleaned blood-contaminated syringes. Hypothetically, oxidant effects of the residual bleach in the bleach-cleaned syringes could enhance the possibility of infection by remaining HIV-1 contained in a contaminated syringe. We suggest that the likelihood of an injection drug user contracting HIV-1 through the sharing of a bleach-cleaned blood-contaminated syringe may be increased by the cotransmission of residual bleach and its localized tissue-inflammatory effects; however, this has not been statistically proven in epidemiological studies.