The process of transcriptional activation directed by the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) was investigated by in vivo footprinting using ligation-mediated polymerase chain reaction in a human epithelial cell line infected with human herpes simplex virus type 1 (HSV-1) or human herpes virus 6 (HHV-6). Infection with both viruses induces a remarkable enhancement in LTR-mediated gene expression that correlates with a change in the pattern of protein binding to the downstream kB site of the enhancer region. In HHV-6 infected cells, this change in the genomic footprinting pattern is concomitant with the induction of specific enhancer-binding proteins in the nucleus. The similarity of these events to those detected in other previously investigated experimental systems suggests that the LTR enhancer region is the ultimate target for the induction of the HIV-1 transcriptional response upon stimuli acting through different upstream pathways.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.