A model of hepatitis B surface antigen has been derived, based on extensive sequence analysis and biochemical data. The surface antigen sequences of the human, woodchuck, ground squirrel and duck hepadnaviruses were examined using hydrophobicity, hydrophobic moments, flexibility and secondary structure prediction. The helix phase diagram, which is a modified version of Eisenberg’s hydrophobic moment plots and which specifically addresses the problem of transmembrane helices, was used to examine the predicted helices. In this model four transmembrane helices are predicted. The N and C termini and the second hydrophilic region, which bears the major B-cell antigenic determinants, are external. It is suggested that the transmembrane helices may pack to form a channel through the membrane and may also be involved in the mechanisms of cell entry. A significant difference between the duck hepadnavirus and the mammalian HBsAg sequences was found, hence care must be taken when extrapolating data between the duck and the human surface antigen.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.