Thermal desorption is a readily automated gas extraction technology based on standard gas chromatography (GC) parameters and providing an efficient, high-sensitivity alternative to conventional solvent extraction. The process of thermal desorption involves the extraction of volatile or semi-volatile organic compounds from a sorbent or material by heating the sample in a flow of inert gas. The extracted analytes are then transferred in the flow of carrier gas to the analyser (typically GC or GC-MS) as a small, discreet and concentrated volume of vapour. In effect the thermal desorber becomes a multi-purpose, stand-alone GC injector. Concentration factors as high as 105–106 can be achieved using modern systems with analytes collected from several tens, even hundreds, of litres of air being delivered to the analyser in as little as 200 µl of gas. Though inherently simple, many factors contribute to the performance and efficiency of the thermal desorption process, which in turn determines the ultimate sensitivity and reliability of a thermal desorption-based analytical method. These factors include retention efficiency (during sampling/focusing), desorption efficiency, artefacts, band broadening and analyte/system stability. This paper describes optimisation of all of these parameters during the development and validation of thermal desorption procedures. Examples of optimum method performance in terms of precision, linearity and sensitivity are presented. A novel approach to overcoming the traditional one-shot limitation of thermal desorption is also described. Examples are presented which illustrate the range of indoor air-related applications for optimised thermal desorption-GC(-MS). New specialist sampling apparatus and alternative real-time detection systems, which can be combined with thermal desorption to extend its utility for indoor air research, are also described.

Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.