Based on observations of fluctuations in progenitors for inflammatory cells during allergic responses, we have proposed that a primary determinant of allergic inflammation involves microenvironmental influences on hemopoietic cell differentiation and phenotype; in addition, as a corollary of this, inflammatory cell burden is proposed as an important indicator of the severity and pattern of the inflammatory process in allergy. The studies outlined here focus on the effects of epithelial-cell- and fibroblast-derived cytokines on granulocytic and monocytic cell differentiation and activation in models involving allergic reactions in the upper and lower airways. Pure cultures of nasal or bronchial epithelial cells or fibroblasts are observed to give rise to cytokines important in inducing the differentiation of basophils, eosinophils, neutrophils and monocyte/macrophages. Gene expression, production and secretion of granulocyte/macrophage-colony-stimulating factor, interleukin-6 (IL-6) and IL-8 can be demonstrated in vitro and in vivo. Up-regulation of gene expression and production of these cytokines, which are important in inducing basophil, eosinophil and neutrophil/macrophage differentiation in several assays, is seen with IL-1 and the neuropeptide substance P; conversely, inhibition of cytokine production by structural cells is observed after pretreatment with corticosteroids in vitro, paralleling in vivo effects. Other modulatory effects also examined include: antiallergic compounds, which may affect posttranscriptional events in cytokine production, and heavy metal ions, which can also induce changes in gene expression. Structural-cell-derived extracellular matrices appear also to be important both in mast cell differentiation and in macrophage cytokine gene expression, both of which potentially feedback upon chronic allergic inflammatory processes, leading to their perpetuation. On the basis of these studies, it is proposed that microenvironmental controls of the inflammatory process involve the initiation and perpetuation of allergic inflammation through effects on cell differentiation by altered structural cells resident in the tissue. In vivo models to directly test this hypothesis are currently under exploration.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.