Introduction: The proportion of patients with pollinosis is relatively high within the allergic disease population. Climate change and air pollution negatively affect allergic respiratory diseases. Therefore, further studies are necessary to clarify the effects of pollen grains and air pollution on allergic diseases. Methods: Building on our previous research, we established an Artemisia pollen-sensitized mouse model and evaluated the impact of nano-SiO2 particle exposure on pollen allergy in this study. Serum samples were collected to detect specific IgE levels and cytokines and conduct metabolomic analysis. Single-cell suspensions were prepared from mouse spleens, and the Th1/Th2 cell ratio was analyzed by flow cytometry. We utilized RBL-2H3 cells, mouse bone marrow-derived mast cells (BMMCs), and the passive cutaneous anaphylaxis (PCA) model to investigate the effects of the most significant metabolites on allergic reactions. Results: Exposure to nano-SiO2 particles can exacerbate the damage to the nasal mucosal epithelial cells of pollen-sensitized mice, disrupt the integrity of the nasal mucosal epithelium, promote goblet cell hyperplasia, elevate serum levels of IL-4 and IL-6, and intensify the imbalance between Th1 and Th2 cells. Metabolomic analysis revealed that exposure to nano-SiO2 particles in pollen-sensitized mice significantly enriched the niacin and nicotinamide metabolism pathways. Nicotinamide was demonstrated to inhibit mast cell degranulation in RBL-2H3 and BMMCs and to reduce IgE-mediated allergic reactions in the PCA model. Conclusion: Pollen-sensitized mice exposed to nano-SiO2 particles can aggravate allergic reactions and induce dysregulation of the metabolism characterized by niacin and nicotinamide. Nicotinamide could stabilize mast cells and may serve as a potential therapeutic strategy for allergic diseases. Further, in-depth investigations are needed.

1.
Zhang
J
,
Yan
Y
,
Jiang
F
,
Chen
J
,
Ouyang
Y
,
Zhang
L
.
Main airborne pollen species and characteristics of allergic rhinitis patients with pollen-related allergies in 13 Northern Chinese cities
.
J Asthma Allergy
.
2024
;
17
:
757
68
.
2.
Tang
R
,
Sun
JL
,
Yin
J
,
Li
Z
.
Artemisia allergy research in China
.
Biomed Res Int
.
2015
;
2015
:
179426
.
3.
Ghunaim
N
,
Wickman
M
,
Almqvist
C
,
Söderström
L
,
Ahlstedt
S
,
van Hage
M
.
Sensitization to different pollens and allergic disease in 4-year-old Swedish children
.
Clin Exp Allergy
.
2006
;
36
(
6
):
722
7
.
4.
Chen
K-W
,
Marusciac
L
,
Tamas
PT
,
Valenta
R
,
Panaitescu
C
.
Ragweed pollen allergy: burden, characteristics, and management of an imported allergen source in Europe
.
Int Arch Allergy Immunol
.
2018
;
176
(
3–4
):
163
80
.
5.
Honda
K
,
Saito
H
,
Fukui
N
,
Ito
E
,
Ishikawa
K
.
The relationship between pollen count levels and prevalence of Japanese cedar pollinosis in Northeast Japan
.
Allergol Int
.
2013
;
62
(
3
):
375
80
.
6.
Wang
XY
,
Ma
TT
,
Wang
XY
,
Zhuang
Y
,
Wang
XD
,
Ning
HY
, et al
.
Prevalence of pollen-induced allergic rhinitis with high pollen exposure in grasslands of Northern China
.
Allergy
.
2018
;
73
(
6
):
1232
43
.
7.
D'Amato
G
,
Chong-Neto
HJ
,
Monge Ortega
OP
,
Vitale
C
,
Ansotegui
I
,
Rosario
N
, et al
.
The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens
.
Allergy
.
2020
;
75
(
9
):
2219
28
.
8.
Sénéchal
H
,
Visez
N
,
Charpin
D
,
Shahali
Y
,
Peltre
G
,
Biolley
JP
, et al
.
A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity
.
Sci World J
.
2015
;
2015
:
940243
.
9.
Chen
R
,
Cheng
J
,
Lv
J
,
Wu
L
,
Wu
J
.
Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China
.
Environ Geochem Health
.
2017
;
39
(
4
):
913
21
.
10.
Mukherjee
A
,
Agrawal
M
.
A global perspective of fine particulate matter pollution and its health effects
.
Rev Environ Contam Toxicol
.
2018
;
244
:
5
51
.
11.
Yang
L
,
Li
C
,
Tang
X
.
The impact of PM2.5 on the host defense of respiratory system
.
Front Cell Dev Biol
.
2020
;
8
:
91
.
12.
Wang
A
.
Distribution characteristics and allergic effect of typical water soluble ions in PM2.5 in Shijingshan District of Beijing
.
Acta Scientiae Circumstantiae
.
2022
;
42
(
3
):
334
41
.
13.
Yang
Y-S
,
Cao
MD
,
Wang
A
,
Liu
QM
,
Zhu
DX
,
Zou
Y
, et al
.
Nano-silica particles synergistically IgE-mediated mast cell activation exacerbating allergic inflammation in mice
.
Front Immunol
.
2022
;
13
:
911300
.
14.
Barnes
H
,
Goh
NSL
,
Leong
TL
,
Hoy
R
.
Silica-associated lung disease: an old-world exposure in modern industries
.
Respirology
.
2019
;
24
(
12
):
1165
75
.
15.
Wang
Y
,
Cai
R
,
Chen
L
,
Cai
X
,
Chen
R
,
Chen
C
, et al
.
Experimental and modeling studies on the filtration of SiO2 nanoparticles aerosolized from different solvents
.
Environ Sci Technol
.
2018
;
52
(
15
):
8733
44
.
16.
Caslin
HL
,
Taruselli
MT
,
Paranjape
A
,
Kiwanuka
K
,
Haque
T
,
Chumanevich
AP
, et al
.
The use of human and mouse mast cell and basophil cultures to assess type 2 inflammation
.
Methods Mol Biol
.
2018
;
1799
:
81
92
.
17.
D’Amato
G
,
Akdis
CA
.
Global warming, climate change, air pollution and allergies
.
Allergy
.
2020
;
75
(
9
):
2158
60
.
18.
Rothenberg
ME
.
The climate change hypothesis for the allergy epidemic
.
J Allergy Clin Immunol
.
2022
;
149
(
5
):
1522
4
.
19.
Bagheri
O
,
Moeltner
K
,
Yang
W
.
Respiratory illness, hospital visits, and health costs: is it air pollution or pollen
.
Environ Res
.
2020
;
187
:
109572
.
20.
Berger
M
,
Bastl
M
,
Bouchal
J
,
Dirr
L
,
Berger
U
.
The influence of air pollution on pollen allergy sufferers
.
Allergol Select
.
2021
;
5
:
345
8
.
21.
Murugadoss
S
,
Lison
D
,
Godderis
L
,
Van Den Brule
S
,
Mast
J
,
Brassinne
F
, et al
.
Toxicology of silica nanoparticles: an update
.
Arch Toxicol
.
2017
;
91
(
9
):
2967
3010
.
22.
Wynn
TA
.
Integrating mechanisms of pulmonary fibrosis
.
J Exp Med
.
2011
;
208
(
7
):
1339
50
.
23.
Chen
L
,
Liu
J
,
Zhang
Y
,
Zhang
G
,
Kang
Y
,
Chen
A
, et al
.
The toxicity of silica nanoparticles to the immune system
.
Nanomedicine
.
2018
;
13
(
15
):
1939
62
.
24.
Yu
Q
,
Fu
G
,
Lin
H
,
Zhao
Q
,
Liu
Y
,
Zhou
Y
, et al
.
Influence of silica particles on mucociliary structure and MUC5B expression in airways of C57BL/6 mice
.
Exp Lung Res
.
2020
;
46
(
7
):
217
25
.
25.
Wu
R
,
Högberg
J
,
Adner
M
,
Ramos-Ramírez
P
,
Stenius
U
,
Zheng
H
.
Crystalline silica particles cause rapid NLRP3-dependent mitochondrial depolarization and DNA damage in airway epithelial cells
.
Part Fibre Toxicol
.
2020
;
17
(
1
):
39
.
26.
Yoshida
T
,
Yoshioka
Y
,
Fujimura
M
,
Yamashita
K
,
Higashisaka
K
,
Morishita
Y
, et al
.
Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice
.
Nanoscale Res Lett
.
2011
;
6
(
1
):
195
.
27.
Issa
M
,
Rivière
G
,
Houdeau
E
,
Adel-Patient
K
.
Perinatal exposure to foodborne inorganic nanoparticles: a role in the susceptibility to food allergy
.
Front Allergy
.
2022
;
3
:
1067281
.
28.
Toda
T
,
Yoshino
S
.
Amorphous nanosilica particles block induction of oral tolerance in mice
.
J Immunotoxicol
.
2016
;
13
(
5
):
723
8
.
29.
Nur Husna
SM
,
Tan
HTT
,
Md Shukri
N
,
Mohd Ashari
NS
,
Wong
KK
.
Nasal epithelial barrier integrity and tight junctions disruption in allergic rhinitis: overview and pathogenic insights
.
Front Immunol
.
2021
;
12
:
663626
.
30.
Celebi Sozener
Z
,
Ozdel Ozturk
B
,
Cerci
P
,
Turk
M
,
Gorgulu Akin
B
,
Akdis
M
, et al
.
Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease
.
Allergy
.
2022
;
77
(
5
):
1418
49
.
31.
Kortekaas Krohn
I
,
Seys
SF
,
Lund
G
,
Jonckheere
AC
,
Dierckx de Casterlé
I
,
Ceuppens
JL
, et al
.
Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation
.
Allergy
.
2020
;
75
(
5
):
1155
64
.
32.
Fukuoka
A
,
Matsushita
K
,
Morikawa
T
,
Takano
H
,
Yoshimoto
T
.
Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier
.
Clin Exp Allergy
.
2016
;
46
(
1
):
142
52
.
33.
Zhao
C
,
Wang
Y
,
Su
Z
,
Pu
W
,
Niu
M
,
Song
S
, et al
.
Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma
.
Sci Total Environ
.
2020
;
730
:
139145
.
34.
Sompornrattanaphan
M
,
Thongngarm
T
,
Ratanawatkul
P
,
Wongsa
C
,
Swigris
JJ
.
The contribution of particulate matter to respiratory allergy
.
Asian Pac J Allergy Immunol
.
2020
;
38
(
1
):
19
28
.
35.
Lu
S
,
Yao
C
,
Zhou
S
,
Lin
Y
,
Zhang
L
,
Zeng
J
, et al
.
Studies on relationships between air pollutants and allergenicity of Humulus Scandens pollen collected from different areas of Shanghai
.
J Environ Sci
.
2020
;
95
:
43
8
.
36.
Gruijthuijsen
YK
,
Grieshuber
I
,
Stöcklinger
A
,
Tischler
U
,
Fehrenbach
T
,
Weller
MG
, et al
.
Nitration enhances the allergenic potential of proteins
.
Int Arch Allergy Immunol
.
2006
;
141
(
3
):
265
75
.
37.
Sedghy
F
,
Varasteh
AR
,
Sankian
M
,
Moghadam
M
.
Interaction between air pollutants and pollen grains: the role on the rising trend in allergy
.
Rep Biochem Mol Biol
.
2018
;
6
(
2
):
219
24
.
38.
Romagnani
S
.
Immunologic influences on allergy and the TH1/TH2 balance
.
J Allergy Clin Immunol
.
2004
;
113
(
3
):
395
400
.
39.
Neurath
MF
,
Finotto
S
,
Glimcher
LH
.
The role of Th1/Th2 polarization in mucosal immunity
.
Nat Med
.
2002
;
8
(
6
):
567
73
.
40.
Ngoc
PL
,
Gold
DR
,
Tzianabos
AO
,
Weiss
ST
,
Celedón
JC
.
Cytokines, allergy, and asthma
.
Curr Opin Allergy Clin Immunol
.
2005
;
5
(
2
):
161
6
.
41.
Nagappan
A
,
Park
SB
,
Lee
SJ
,
Moon
Y
.
Mechanistic implications of biomass-derived particulate matter for immunity and immune disorders
.
Toxics
.
2021
;
9
(
2
):
18
.
42.
Wei
T
,
Tang
M
.
Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system
.
Environ Toxicol Pharmacol
.
2018
;
60
:
195
201
.
43.
Pang
L
,
Yu
P
,
Liu
X
,
Fan
Y
,
Shi
Y
,
Zou
S
.
Fine particulate matter induces airway inflammation by disturbing the balance between Th1/Th2 and regulation of GATA3 and Runx3 expression in BALB/c mice
.
Mol Med Rep
.
2021
;
23
(
5
):
378
.
44.
Wang
C
,
Wang
J
,
Zheng
X
,
Zhang
J
,
Zhang
J
,
Qiao
G
, et al
.
Epigenetic regulation is involved in traffic-related PM2.5 aggravating allergic airway inflammation in rats
.
Clin Immunol
.
2022
;
234
:
108914
.
45.
van Zijverden
M
,
van der Pijl
A
,
Bol
M
,
van Pinxteren
FA
,
de Haar
C
,
Penninks
AH
, et al
.
Diesel exhaust, carbon black, and silica particles display distinct Th1/Th2 modulating activity
.
Toxicol Appl Pharmacol
.
2000
;
168
(
2
):
131
9
.
46.
Kim
JA
,
Cho
JH
,
Park
IH
,
Shin
JM
,
Lee
SA
,
Lee
HM
.
Diesel exhaust particles upregulate interleukins IL-6 and IL-8 in nasal fibroblasts
.
PLoS One
.
2016
;
11
(
6
):
e0157058
.
47.
Wang
Y
,
Tang
N
,
Mao
M
,
Zhou
Y
,
Wu
Y
,
Li
J
, et al
.
Fine particulate matter (PM2.5) promotes IgE-mediated mast cell activation through ROS/Gadd45b/JNK axis
.
J Dermatol Sci
.
2021
;
102
(
1
):
47
57
.
48.
Saito
H
,
Tamari
M
,
Motomura
K
,
Ikutani
M
,
Nakae
S
,
Matsumoto
K
, et al
.
Omics in allergy and asthma
.
J Allergy Clin Immunol
.
2024
;
154
(
6
):
1378
90
.
49.
Scrivo
R
,
Casadei
L
,
Valerio
M
,
Priori
R
,
Valesini
G
,
Manetti
C
.
Metabolomics approach in allergic and rheumatic diseases
.
Curr Allergy Asthma Rep
.
2014
;
14
(
6
):
445
.
50.
Zhou
Y-J
,
Li
LS
,
Sun
JL
,
Guan
K
,
Wei
JF
.
1H NMR-based metabolomic study of metabolic profiling for pollinosis
.
World Allergy Organ J
.
2019
;
12
(
1
):
100005
.
51.
Kelly
RS
,
Dahlin
A
,
McGeachie
MJ
,
Qiu
W
,
Sordillo
J
,
Wan
ES
, et al
.
Asthma metabolomics and the potential for integrative omics in research and the clinic
.
Chest
.
2017
;
151
(
2
):
262
77
.
52.
Wang
C
,
Jiang
S
,
Zhang
S
,
Ouyang
Z
,
Wang
G
,
Wang
F
.
Research progress of metabolomics in asthma
.
Metabolites
.
2021
;
11
(
9
):
567
.
53.
Wang
Z
,
Gao
S
,
Xie
J
,
Li
R
.
Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of lung tissue in mice with PM2.5-induced asthma
.
Chemosphere
.
2019
;
220
:
1
10
.
54.
Hrubša
M
,
Siatka
T
,
Nejmanová
I
,
Vopršalová
M
,
Kujovská Krčmová
L
,
Matoušová
K
, et al
.
Biological properties of vitamins of the B-complex, Part 1: vitamins B1, B2, B3, and B5
.
Nutrients
.
2022
;
14
(
3
):
484
.
55.
Kirkland
JB
,
Meyer-Ficca
ML
.
Niacin
.
Adv Food Nutr Res
.
2018
;
83
:
83
149
.
56.
Mehmel
M
,
Jovanović
N
,
Spitz
U
.
Nicotinamide riboside-the current state of research and therapeutic uses
.
Nutrients
.
2020
;
12
(
6
):
1616
.
57.
Ungerstedt
JS
,
Blömback
M
,
Söderström
T
.
Nicotinamide is a potent inhibitor of proinflammatory cytokines
.
Clin Exp Immunol
.
2003
;
131
(
1
):
48
52
.
58.
Lipszyc
PS
,
Cremaschi
GA
,
Zorrilla-Zubilete
M
,
Bertolino
MLA
,
Capani
F
,
Genaro
AM
, et al
.
Niacin modulates pro-inflammatory cytokine secretion. A potential mechanism involved in its anti-atherosclerotic effect
.
Open Cardiovasc Med J
.
2013
;
7
:
90
8
.
59.
Namazi
MR
.
Nicotinamide as a potential addition to the anti-atopic dermatitis armamentarium
.
Int Immunopharmacol
.
2004
;
4
(
6
):
709
12
.
60.
Rolfe
HM
.
A review of nicotinamide: treatment of skin diseases and potential side effects
.
J Cosmet Dermatol
.
2014
;
13
(
4
):
324
8
.
61.
Wohlrab
J
,
Kreft
D
.
Niacinamide: mechanisms of action and its topical use in dermatology
.
Skin Pharmacol Physiol
.
2014
;
27
(
6
):
311
5
.
62.
Boo
YC
.
Mechanistic basis and clinical evidence for the applications of nicotinamide (niacinamide) to control skin aging and pigmentation
.
Antioxidants
.
2021
;
10
(
8
):
1315
.
63.
El-Heis
S
,
Crozier
SR
,
Robinson
SM
,
Harvey
NC
,
Cooper
C
,
Inskip
HM
, et al
.
Higher maternal serum concentrations of nicotinamide and related metabolites in late pregnancy are associated with a lower risk of offspring atopic eczema at age 12 months
.
Clin Exp Allergy
.
2016
;
46
(
10
):
1337
43
.
64.
Lau
HX
,
El-Heis
S
,
Yap
QV
,
Chan
YH
,
Tan
CPT
,
Karnani
N
, et al
.
Role of maternal tryptophan metabolism in allergic diseases in the offspring
.
Clin Exp Allergy
.
2021
;
51
(
10
):
1346
60
.
65.
Kelly
RS
,
Sordillo
JE
,
Lasky-Su
J
,
Dahlin
A
,
Perng
W
,
Rifas-Shiman
SL
, et al
.
Plasma metabolite profiles in children with current asthma
.
Clin Exp Allergy
.
2018
;
48
(
10
):
1297
304
.
66.
Bekier
E
,
Szyc
H
,
Czerwińska
U
,
Maśliński
C
.
The influence of nicotinamide on the course of experimental bronchial asthma in Guinea pig
.
Agents Actions
.
1973
;
3
(
3
):
176
.
67.
Bekier
E
,
Wyczólkowska
J
,
Szyc
H
,
Maśliński
C
.
The inhibitory effect of nicotinamide on asthma-like symptoms and eosinophilia in Guinea pigs, anaphylactic mast cell degranulation in mice, and histamine release from rat isolated peritoneal mast cells by compound 48-80
.
Int Arch Allergy Appl Immunol
.
1974
;
47
(
5
):
737
48
.
68.
Piotin
A
,
Oulehri
W
,
Charles
AL
,
Tacquard
C
,
Collange
O
,
Mertes
PM
, et al
.
Oxidative stress and mitochondria are involved in anaphylaxis and mast cell degranulation: a systematic review
.
Antioxidants
.
2024
;
13
(
8
):
920
.
69.
Parrot
JL
,
Wyczolkowska
Y
,
Santais
MC
,
Ruff
F
,
Mordelet-Dambrine
M
,
Maśliński
C
.
The action of nicotinamide on the release of histamine
.
Agents Actions
.
1974
;
4
(
3
):
202
.
70.
Hosoki
K
,
Boldogh
I
,
Sur
S
.
Innate responses to pollen allergens
.
Curr Opin Allergy Clin Immunol
.
2015
;
15
(
1
):
79
88
.
71.
Kim
H-W
,
Ryoo
GH
,
Jang
HY
,
Rah
SY
,
Lee
DH
,
Kim
DK
, et al
.
NAD+-boosting molecules suppress mast cell degranulation and anaphylactic responses in mice
.
Theranostics
.
2022
;
12
(
7
):
3316
28
.
72.
Liang
J
,
Zhou
C
,
Zhang
C
,
Liang
S
,
Zhou
Z
,
Zhou
Z
, et al
.
Nicotinamide mononucleotide attenuates airway epithelial barrier dysfunction via inhibiting SIRT3 SUMOylation in asthma
.
Int Immunopharmacol
.
2024
;
127
:
111328
.
You do not currently have access to this content.