Introduction: Ubiquitination and immune regulation play an important role in sepsis. The purpose of this study was to explore the potential value of ubiquitination- and immune-related genes in sepsis and develop a risk score prognostic model based on sepsis ubiquitination- and immune-related genes for accurate outcome prediction and better treatment guidance. Methods: Differential expression and univariate Cox analyses were used to identify ubiquitination- and immune-related DEGs related to prognosis, and then a risk model was constructed using LASSO regression analysis. Subsequently, Kaplan-Meier analysis, time-dependent ROC curve analysis, immune cell infiltration analysis, functional enrichment analysis, drug prediction, and molecular docking were performed. Results: A total of 4 ubiquitination- and immune-related DEGs related to the prognosis of sepsis were identified. A risk score model was constructed based on these 4 genes. The proportion of death samples in the high-risk score group was higher and the OS was worse. The risk score was an independent prognostic factor for sepsis. The time-dependent ROC curve indicated that the risk score model had good predictive ability. The results of ssGSEA and GSEA showed that most immune cell infiltration levels decreased and immune- and inflammation-related pathways showed inhibitory states in the high-risk group. In addition, 7 protein-drug docking results were obtained. The binding energy of LCK and JNJ-26483327 was the lowest. Conclusion: The 4 ubiquitination- and immune-related model genes may play an important role in sepsis by regulating immune cell infiltration and immune- and inflammatory-related pathways. The model constructed based on these 4 genes has good predictive value, which may help clinical doctors better evaluate the prognosis of sepsis patients and develop personalized treatment plans.

1.
Singer
M
,
Deutschman
CS
,
Seymour
CW
,
Shankar-Hari
M
,
Annane
D
,
Bauer
M
, et al
.
The Third International consensus definitions for sepsis and septic shock (Sepsis-3)
.
JAMA
.
2016
;
315
(
8
):
801
10
.
2.
Fleischmann-Struzek
C
,
Mellhammar
L
,
Rose
N
,
Cassini
A
,
Rudd
KE
,
Schlattmann
P
, et al
.
Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis
.
Intensive Care Med
.
2020
;
46
(
8
):
1552
62
.
3.
Yang
H
,
Cui
Y
,
Peng
W
,
Zhu
F
,
Ma
S
,
Rao
M
, et al
.
Identification of molecular subtypes and a novel prognostic model of sepsis based on ferroptosis-associated gene signature
.
Biomolecules
.
2022
;
12
(
10
):
1479
.
4.
Zheng
Y
,
Liu
B
,
Deng
X
,
Chen
Y
,
Huang
Y
,
Zhang
Y
, et al
.
Construction and validation of a robust prognostic model based on immune features in sepsis
.
Front Immunol
.
2022
;
13
:
994295
.
5.
Swatek
KN
,
Komander
D
.
Ubiquitin modifications
.
Cell Res
.
2016
;
26
(
4
):
399
422
.
6.
Chen
ZJ
,
Sun
LJ
.
Nonproteolytic functions of ubiquitin in cell signaling
.
Mol Cell
.
2009
;
33
(
3
):
275
86
.
7.
Liao
Y
,
Zhang
W
,
Zhou
M
,
Zhu
C
,
Zou
Z
.
Ubiquitination in pyroptosis pathway: a potential therapeutic target for sepsis
.
Cytokine Growth Factor Rev
.
2024
;
80
:
72
86
.
8.
Wang
J
,
He
Y
,
Zhou
D
.
The role of ubiquitination in microbial infection induced endothelial dysfunction: potential therapeutic targets for sepsis
.
Expert Opin Ther Targets
.
2023
;
27
(
9
):
827
39
.
9.
Li
Y
,
Yu
J
,
Zeng
Z
,
Lin
W
.
Regulation of ubiquitination in sepsis: from PAMP versus DAMP to peripheral inflammation and cell death
.
Front Immunol
.
2024
;
15
:
1513206
.
10.
Hu
B
,
Ge
C
,
Zhu
C
.
Ubiquitin-specific peptidase 18 negatively regulates and inhibits lipopolysaccharide-induced sepsis by targeting transforming growth factor-β-activated kinase 1 activity
.
Int Immunol
.
2021
;
33
(
9
):
461
8
.
11.
Wu
L
,
Ai
ML
,
Feng
Q
,
Deng
S
,
Liu
ZY
,
Zhang
LN
, et al
.
Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication
.
J Crit Care
.
2019
;
52
:
172
9
.
12.
Boomer
JS
,
Green
JM
,
Hotchkiss
RS
.
The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer
.
Virulence
.
2014
;
5
(
1
):
45
56
.
13.
Nedeva
C
.
Inflammation and cell death of the innate and adaptive immune system during sepsis
.
Biomolecules
.
2021
;
11
(
7
):
1011
.
14.
Hutchins
NA
,
Unsinger
J
,
Hotchkiss
RS
,
Ayala
A
.
The new normal: immunomodulatory agents against sepsis immune suppression
.
Trends Mol Med
.
2014
;
20
(
4
):
224
33
.
15.
Hotchkiss
RS
,
Monneret
G
,
Payen
D
.
Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach
.
Lancet Infect Dis
.
2013
;
13
(
3
):
260
8
.
16.
Lu
J
,
Chen
R
,
Ou
Y
,
Jiang
Q
,
Wang
L
,
Liu
G
, et al
.
Characterization of immune-related genes andimmune infiltration features for early diagnosis, prognosis and recognition of immunosuppression in sepsis
.
Int Immunopharmacol
.
2022
;
107
:
108650
.
17.
Liu
S
,
Li
Y
,
She
F
,
Zhao
X
,
Yao
Y
.
Predictive value of immune cell counts and neutrophil-to-lymphocyte ratio for 28-day mortality in patients with sepsis caused by intra-abdominal infection
.
Burns Trauma
.
2021
;
9
:
tkaa040
.
18.
Hu
H
,
Sun
SC
.
Ubiquitin signaling in immune responses
.
Cell Res
.
2016
;
26
(
4
):
457
83
.
19.
Zhou
Q
,
Zhang
J
.
K27-linked noncanonic ubiquitination in immune regulation
.
J Leukoc Biol
.
2022
;
111
(
1
):
223
35
.
20.
Popovic
D
,
Vucic
D
,
Dikic
I
.
Ubiquitination in disease pathogenesis and treatment
.
Nat Med
.
2014
;
20
(
11
):
1242
53
.
21.
Liu
T
,
Wen
Z
,
Shao
L
,
Cui
Y
,
Tang
X
,
Miao
H
, et al
.
ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis
.
Clin Immunol
.
2023
;
254
:
109698
.
22.
Shao
S
,
Zhou
D
,
Feng
J
,
Liu
Y
,
Baturuhu
YH
,
Yin
H
, et al
.
Regulation of inflammation and immunity in sepsis by E3 ligases
.
Front Endocrinol
.
2023
;
14
:
1124334
.
23.
Srzić
I
,
Nesek Adam
V
,
Tunjić Pejak
D
.
Sepsis definition: what’s new in the treatment guidelines
.
Acta Clin Croat
.
2022
;
61
(
Suppl 1
):
67
72
.
24.
Bhoj
VG
,
Chen
ZJ
.
Ubiquitylation in innate and adaptive immunity
.
Nature
.
2009
;
458
(
7237
):
430
7
.
25.
Zinngrebe
J
,
Montinaro
A
,
Peltzer
N
,
Walczak
H
.
Ubiquitin in the immune system
.
EMBO Rep
.
2014
;
15
(
1
):
28
45
.
26.
Huang
L
,
Li
F
,
Ye
L
,
Yu
F
,
Wang
C
.
Epigenetic regulation of embryonic ectoderm development in stem cell differentiation and transformation during ontogenesis
.
Cell Prolif
.
2023
;
56
(
4
):
e13413
.
27.
Cao
Q
,
Wang
X
,
Zhao
M
,
Yang
R
,
Malik
R
,
Qiao
Y
, et al
.
The central role of EED in the orchestration of polycomb group complexes
.
Nat Commun
.
2014
;
5
:
3127
.
28.
Ariës
IM
,
Bodaar
K
,
Karim
SA
,
Chonghaile
TN
,
Hinze
L
,
Burns
MA
, et al
.
PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia
.
J Exp Med
.
2018
;
215
(
12
):
3094
114
.
29.
Dong
H
,
Liu
S
,
Zhang
X
,
Chen
S
,
Kang
L
,
Chen
Y
, et al
.
An allosteric PRC2 inhibitor targeting EED suppresses tumor progression by modulating the immune response
.
Cancer Res
.
2019
;
79
(
21
):
5587
96
.
30.
Violot
S
,
Hong
SS
,
Rakotobe
D
,
Petit
C
,
Gay
B
,
Moreau
K
, et al
.
The human polycomb group EED protein interacts with the integrase of human immunodeficiency virus type 1
.
J Virol
.
2003
;
77
(
23
):
12507
22
.
31.
Wilson
JD
,
Hillas
JL
.
Astemizole: a new long-acting antihistamine in the treatment of seasonal allergic rhinitis
.
Clin Allergy
.
1983
;
13
(
2
):
131
40
.
32.
Alomar
A
,
De La
C
,
Fernandez
J
.
Cetirizine vs astemizole in the treatment of chronic idiopathic urticaria
.
J Int Med Res
.
1990
;
18
(
5
):
358
65
.
33.
Secchi
AG
.
Nedocromil sodium and astemizole, alone or combined, for treatment of seasonal allergic conjunctivitis (SAC)
.
Ocul Immunol Inflamm
.
1993
;
1
(
1–2
):
31
4
.
34.
Poh
AR
,
O’Donoghue
RJ
,
Ernst
M
.
Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells
.
Oncotarget
.
2015
;
6
(
18
):
15752
71
.
35.
Lei
ST
,
Lai
ZZ
,
Hou
SH
,
Liu
YK
,
Li
MQ
,
Zhao
D
.
Abnormal HCK/glutamine/autophagy axis promotes endometriosis development by impairing macrophage phagocytosis
.
Cell Prolif
.
2024
;
57
(
11
):
e13702
.
36.
Liu
Y
,
Bezverbnaya
K
,
Zhao
T
,
Parsons
MJ
,
Shi
M
,
Treanor
B
, et al
.
Involvement of the HCK and FGR src-family kinases in FCRL4-mediated immune regulation
.
J Immunol
.
2015
;
194
(
12
):
5851
60
.
37.
Xue
S
,
Shi
W
,
Shi
T
,
Tuerxuntayi
A
,
Abulaiti
P
,
Liu
Z
, et al
.
Resveratrol attenuates non-steroidal anti-inflammatory drug-induced intestinal injury in rats in a high-altitude hypoxic environment by modulating the TLR4/NFκB/IκB pathway and gut microbiota composition
.
PLoS One
.
2024
;
19
(
8
):
e0305233
.
38.
Yan
Z
,
Ji
L
.
Hck promotes IL-1β-induced extracellular matrix degradation, inflammation, and apoptosis in osteoarthritis via activation of the JAK-STAT3 signaling pathway
.
Adv Rheumatol
.
2024
;
64
(
1
):
88
.
39.
Lowell
CA
,
Berton
G
.
Resistance to endotoxic shock and reduced neutrophil migration in mice deficient for the Src-family kinases Hck and Fgr
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
13
):
7580
4
.
40.
O’Reilly
LP
,
Zhang
X
,
Smithgall
TE
.
Individual Src-family tyrosine kinases direct the degradation or protection of the clock protein timeless via differential ubiquitylation
.
Cell Signal
.
2013
;
25
(
4
):
860
6
.
41.
Zhang
X
,
Cui
Y
,
Ding
X
,
Liu
S
,
Han
B
,
Duan
X
, et al
.
Analysis of mRNA-lncRNA and mRNA-lncRNA-pathway co-expression networks based on WGCNA in developing pediatric sepsis
.
Bioengineered
.
2021
;
12
(
1
):
1457
70
.
42.
Xiao
YP
,
Cheng
YC
,
Chen
C
,
Xue
HM
,
Yang
M
,
Lin
C
.
Identification of the shared gene signatures of HCK, NOG, RNF125 and biological mechanism in pediatric acute lymphoblastic leukaemia and pediatric sepsis
.
Mol Biotechnol
.
2025
;
67
(
1
):
80
90
.
43.
Wang
J
,
Lin
Z
,
Liu
Q
,
Fu
F
,
Wang
Z
,
Ma
J
, et al
.
Bat employs a conserved MDA5 gene to trigger antiviral innate immune responses
.
Front Immunol
.
2022
;
13
:
904481
.
44.
Dias Junior
AG
,
Sampaio
NG
,
Rehwinkel
J
.
A balancing act: MDA5 in antiviral immunity and autoinflammation
.
Trends Microbiol
.
2019
;
27
(
1
):
75
85
.
45.
Barrat
FJ
,
Elkon
KB
,
Fitzgerald
KA
.
Importance of nucleic acid recognition in inflammation and autoimmunity
.
Annu Rev Med
.
2016
;
67
:
323
36
.
46.
Munroe
ME
,
Pezant
N
,
Brown
MA
,
Fife
DA
,
Guthridge
JM
,
Kelly
JA
, et al
.
Association of IFIH1 and pro-inflammatory mediators: potential new clues in SLE-associated pathogenesis
.
PLoS One
.
2017
;
12
(
2
):
e0171193
.
47.
Luca
D
,
Lee
S
,
Hirota
K
,
Okabe
Y
,
Uehori
J
,
Izawa
K
, et al
.
Aberrant RNA sensing in regulatory T cells causes systemic autoimmunity
.
Sci Adv
.
2024
;
10
(
9
):
eadk0820
.
48.
Lang
X
,
Tang
T
,
Jin
T
,
Ding
C
,
Zhou
R
,
Jiang
W
.
TRIM65-catalized ubiquitination is essential for MDA5-mediated antiviral innate immunity
.
J Exp Med
.
2017
;
214
(
2
):
459
73
.
49.
Wang
A
,
Kang
X
,
Wang
J
,
Zhang
S
.
IFIH1/IRF1/STAT1 promotes sepsis associated inflammatory lung injury via activating macrophage M1 polarization
.
Int Immunopharmacol
.
2023
;
114
:
109478
.
50.
Yang
Z
,
Xia
H
,
Lai
J
,
Qiu
L
,
Lin
J
.
Artesunate alleviates sepsis-induced liver injury by regulating macrophage polarization via the lncRNA MALAT1/PTBP1/IFIH1 axis
.
Diagn Microbiol Infect Dis
.
2024
;
110
(
1
):
116383
.
51.
Simeoni
L
.
Lck activation: puzzling the pieces together
.
Oncotarget
.
2017
;
8
(
61
):
102761
2
.
52.
Yang
X
,
Hu
B
,
Sun
R
,
Chen
J
.
Deregulation of T cell response in sepsis
.
Front Biosci
.
2014
;
19
(
8
):
1370
6
.
53.
Davies
K
,
McLaren
JE
.
Destabilisation of T cell-dependent humoral immunity in sepsis
.
Clin Sci
.
2024
;
138
(
1
):
65
85
.
54.
Al-Harbi
NO
,
Ahmad
SF
,
Almutairi
M
,
Alanazi
AZ
,
Ibrahim
KE
,
Alqarni
SA
, et al
.
Lck signaling inhibition causes improvement in clinical features of psoriatic inflammation through reduction in inflammatory cytokines in CD4+ T cells in imiquimod mouse model
.
Cell Immunol
.
2022
;
376
:
104531
.
55.
Shih
YC
,
Chen
HF
,
Wu
CY
,
Ciou
YR
,
Wang
CW
,
Chuang
HC
, et al
.
The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling
.
Nat Commun
.
2024
;
15
(
1
):
532
.
56.
Rao
N
,
Miyake
S
,
Reddi
AL
,
Douillard
P
,
Ghosh
AK
,
Dodge
IL
, et al
.
Negative regulation of Lck by Cbl ubiquitin ligase
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
6
):
3794
9
.
57.
Chen
M
,
Chen
X
,
Hu
Y
,
Cai
X
.
Screening of key genes related to the prognosis of mouse sepsis
.
Biosci Rep
.
2020
;
40
(
10
).
58.
Almansa
R
,
Heredia-Rodríguez
M
,
Gomez-Sanchez
E
,
Andaluz-Ojeda
D
,
Iglesias
V
,
Rico
L
, et al
.
Transcriptomic correlates of organ failure extent in sepsis
.
J Infect
.
2015
;
70
(
5
):
445
56
.
59.
Kong
F
,
Zhu
Y
,
Xu
J
,
Ling
B
,
Wang
C
,
Ji
J
, et al
.
The novel role of LCK and other PcDEGs in the diagnosis and prognosis of sepsis: insights from bioinformatic identification and experimental validation
.
Int Immunopharmacol
.
2025
;
149
:
114194
.
60.
Jiang
Y
,
Miao
Q
,
Hu
L
,
Zhou
T
,
Hu
Y
,
Tian
Y
.
FYN and CD247: key genes for septic shock based on bioinformatics and meta-analysis
.
Comb Chem High Throughput Screen
.
2022
;
25
(
10
):
1722
30
.
61.
Xie
K
,
Wang
F
,
Yang
Y
,
Pan
S
,
Wang
J
,
Xiao
N
, et al
.
Monotropein alleviates septic acute liver injury by restricting oxidative stress, inflammation, and apoptosis via the AKT (Ser473)/GSK3β (Ser9)/Fyn/NRF2 pathway
.
Int Immunopharmacol
.
2024
;
142
(
Pt B
):
113178
.
62.
Xie
D
,
Shen
F
,
He
S
,
Chen
M
,
Han
Q
,
Fang
M
, et al
.
IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats
.
Glia
.
2016
;
64
(
4
):
583
602
.
63.
Unal
U
,
Comertpay
B
,
Demirtas
TY
,
Gov
E
.
Drug repurposing for rheumatoid arthritis: identification of new drug candidates via bioinformatics and text mining analysis
.
Autoimmunity
.
2022
;
55
(
3
):
147
56
.
64.
Hörner
C
,
Bouchon
A
,
Bierhaus
A
,
Nawroth
PP
,
Martin
E
,
Bardenheuer
HJ
, et al
.
Role of the innate immune response in sepsis
.
Anaesthesist
.
2004
;
53
(
1
):
10
28
.
65.
Pinheiro da Silva
F
,
Aloulou
M
,
Skurnik
D
,
Benhamou
M
,
Andremont
A
,
Velasco
IT
, et al
.
CD16 promotes Escherichia coli sepsis through an FcR gamma inhibitory pathway that prevents phagocytosis and facilitates inflammation
.
Nat Med
.
2007
;
13
(
11
):
1368
74
.
66.
Zhang
W
,
Chen
L
,
Lu
X
,
Dong
X
,
Feng
M
,
Tu
Y
, et al
.
EFHD2 regulates T cell receptor signaling and modulates T helper cell activation in early sepsis
.
Int Immunopharmacol
.
2024
;
133
:
112087
.
67.
Huang
S
,
Liu
D
,
Sun
J
,
Zhang
H
,
Zhang
J
,
Wang
Q
, et al
.
Tim-3 regulates sepsis-induced immunosuppression by inhibiting the NF-κB signaling pathway in CD4 T cells
.
Mol Ther
.
2022
;
30
(
3
):
1227
38
.
68.
Halstead
ES
,
Carcillo
JA
,
Schilling
B
,
Greiner
RJ
,
Whiteside
TL
.
Reduced frequency of CD56 dim CD16 pos natural killer cells in pediatric systemic inflammatory response syndrome/sepsis patients
.
Pediatr Res
.
2013
;
74
(
4
):
427
32
.
69.
Zhang
X
,
Zhang
Y
,
Yuan
S
,
Zhang
J
.
The potential immunological mechanisms of sepsis
.
Front Immunol
.
2024
;
15
:
1434688
.
70.
Córneo
EDS
,
Michels
M
,
Dal-Pizzol
F
.
Sepsis, immunosuppression and the role of epigenetic mechanisms
.
Expert Rev Clin Immunol
.
2021
;
17
(
2
):
169
76
.
71.
Danahy
DB
,
Strother
RK
,
Badovinac
VP
,
Griffith
TS
.
Clinical and experimental sepsis impairs CD8 T-Cell-Mediated immunity
.
Crit Rev Immunol
.
2016
;
36
(
1
):
57
74
.
72.
Li
LL
,
Dai
B
,
Sun
YH
,
Zhang
TT
.
Monocytes undergo functional reprogramming to generate immunosuppression through HIF-1α signaling pathway in the late phase of sepsis
.
Mediators Inflamm
.
2020
;
2020
:
4235909
.
You do not currently have access to this content.