Introduction: An increasing number of studies have demonstrated that dynamic changes in lipid species can affect allergic diseases; however, the causal relationship and mediating role of immune cells remain unclear. Methods: We conducted a bidirectional two-sample mendelian randomization (MR) analysis using genome-wide association study (GWAS) data on 179 lipid species (n = 7,174) and three types of allergic diseases including allergic rhinitis (AR) (n = 370,158), allergic asthma (n = 219,753), and allergic conjunctivitis (n = 377,277). The principal model used was the inverse variance-weighted approach, and a series of sensitivity analyses were conducted to ensure the robustness of the results. We used a two-step MR approach to assess whether the causal effect was mediated by immune cells (n = 3,757). Results: Sterol ester and sphingomyelin played pathogenic roles in allergic asthma, AR, and allergic conjunctivitis; however, the effective subtypes differed. Among them, CD45RA CD4+ mature T cells and CCR2 on CD14+ CD16+ monocytes affected the promoting impact of sterol ester’s metabolism on allergic asthma and AR with different mediating proportions, while the role of sphingomyelin may not involve the immune cells. Moreover, we observed that HLA-DR on CD33 HLA DR+ myeloid cells, CD11b on CD66b++ myeloid cells, and IgD+ CD38 B cells played the most mediating effect of phosphatidylethanolamine (O−18:2_20:4) in allergic asthma, phosphatidylinositol (16:0_18:1) in AR, and phosphatidylethanolamine (18:0_18:2) in allergic conjunctivitis. Conclusion: This MR study provides evidence for specific lipid species associated with the risk of allergic diseases, especially sterol esters, and identifies the immune cells that mediate this causal relationship.

1.
Agache
I
,
Akdis
CA
.
Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases
.
J Clin Invest
.
2019
;
129
(
4
):
1493
503
.
2.
Shankar
A
,
McAlees
JW
,
Lewkowich
IP
.
Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease
.
J Allergy Clin Immunol
.
2022
;
150
(
2
):
266
76
.
3.
Li
WJ
,
Zhao
Y
,
Gao
Y
,
Dong
LL
,
Wu
YF
,
Chen
ZH
, et al
.
Lipid metabolism in asthma: immune regulation and potential therapeutic target
.
Cell Immunol
.
2021
;
364
:
104341
.
4.
Liu
Y
,
Liu
J
,
Du
M
,
Yang
H
,
Shi
R
,
Shi
Y
, et al
.
Short-chain fatty acid - a critical interfering factor for allergic diseases
.
Chem Biol Interact
.
2023
;
385
:
110739
.
5.
Haldar
P
,
Pavord
ID
,
Shaw
DE
,
Berry
MA
,
Thomas
M
,
Brightling
CE
, et al
.
Cluster analysis and clinical asthma phenotypes
.
Am J Respir Crit Care Med
.
2008
;
178
(
3
):
218
24
.
6.
McErlean
P
,
Kelly
A
,
Dhariwal
J
,
Kirtland
M
,
Watson
J
,
Ranz
I
, et al
.
Profiling of H3K27Ac reveals the influence of asthma on the epigenome of the airway epithelium
.
Front Genet
.
2020
;
11
:
585746
.
7.
Nishimura
N
,
Yokota
M
,
Kurihara
S
,
Iwata
A
,
Kageyama
T
,
Ito
T
, et al
.
Airway epithelial STAT3 inhibits allergic inflammation via upregulation of stearoyl-CoA desaturase 1
.
Allergol Int
.
2022
;
71
(
4
):
520
7
.
8.
Kowalczyk
A
,
Krogulska
A
.
The relationship between lipid parameters and the course of allergic rhinitis in children
.
Postepy Dermatol Alergol
.
2023
;
40
(
6
):
779
89
.
9.
Jo-Watanabe
A
,
Okuno
T
,
Yokomizo
T
.
The role of leukotrienes as potential therapeutic targets in allergic disorders
.
Int J Mol Sci
.
2019
;
20
(
14
):
3580
.
10.
Pelikan
Z
.
Mediator profiles in tears during the conjunctival response induced by allergic reaction in the nasal mucosa
.
Mol Vis
.
2013
;
19
:
1453
70
.
11.
Kilanowski
A
,
Thiering
E
,
Wang
G
,
Kumar
A
,
Kress
S
,
Flexeder
C
, et al
.
Allergic disease trajectories up to adolescence: characteristics, early-life, and genetic determinants
.
Allergy
.
2023
;
78
(
3
):
836
50
.
12.
Joulia
R
,
Puttur
F
,
Stölting
H
,
Traves
WJ
,
Entwistle
LJ
,
Voitovich
A
, et al
.
Mast cell activation disrupts interactions between endothelial cells and pericytes during early life allergic asthma
.
J Clin Invest
.
2024
;
134
(
6
):
e173676
.
13.
Smith
GD
,
Ebrahim
S
.
Mendelian randomization: prospects, potentials, and limitations
.
Int J Epidemiol
.
2004
;
33
(
1
):
30
42
.
14.
Ottensmann
L
,
Tabassum
R
,
Ruotsalainen
SE
,
Gerl
MJ
,
Klose
C
,
Widén
E
, et al
.
Genome-wide association analysis of plasma lipidome identifies 495 genetic associations
.
Nat Commun
.
2023
;
14
(
1
):
6934
.
15.
Orrù
V
,
Steri
M
,
Sidore
C
,
Marongiu
M
,
Serra
V
,
Olla
S
, et al
.
Author Correction: complex genetic signatures in immune cells underlie autoimmunity and inform therapy
.
Nat Genet
.
2020
;
52
(
11
):
1266
. Erratum for: Nat Genet. 2020 Oct;52(10):1036-1045.
16.
Hemani
G
,
Bowden
J
,
Davey Smith
G
.
Evaluating the potential role of pleiotropy in Mendelian randomization studies
.
Hum Mol Genet
.
2018
;
27
(
R2
):
R195
208
.
17.
1000 Genomes Project Consortium
;
Auton
A
,
Brooks
LD
,
Durbin
RM
,
Garrison
EP
,
Kang
HM
, et al
.
A global reference for human genetic variation
.
Nature
.
2015
;
526
(
7571
):
68
74
.
18.
Burgess
S
,
Thompson
SG
;
CRP CHD Genetics Collaboration
.
Avoiding bias from weak instruments in Mendelian randomization studies
.
Int J Epidemiol
.
2011
;
40
(
3
):
755
64
.
19.
Lawlor
DA
,
Harbord
RM
,
Sterne
JA
,
Timpson
N
,
Davey Smith
G
.
Mendelian randomization: using genes as instruments for making causal inferences in epidemiology
.
Stat Med
.
2008
;
27
(
8
):
1133
63
.
20.
MacKinnon
DP
,
Lockwood
CM
,
Hoffman
JM
,
West
SG
,
Sheets
V
.
A comparison of methods to test mediation and other intervening variable effects
.
Psychol Methods
.
2002
;
7
(
1
):
83
104
.
21.
Burgess
S
,
Zuber
V
,
Valdes-Marquez
E
,
Sun
BB
,
Hopewell
JC
.
Mendelian randomization with fine-mapped genetic data: choosing from large numbers of correlated instrumental variables
.
Genet Epidemiol
.
2017
;
41
(
8
):
714
25
.
22.
Verbanck
M
,
Chen
CY
,
Neale
B
,
Do
R
.
Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases
.
Nat Genet
.
2018
;
50
(
5
):
693
8
.
23.
Grundy
SM
.
Promise of low-density lipoprotein-lowering therapy for primary and secondary prevention
.
Circulation
.
2008
;
117
(
4
):
569
73
.
24.
Surls
J
,
Nazarov-Stoica
C
,
Kehl
M
,
Olsen
C
,
Casares
S
,
Brumeanu
TD
.
Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response
.
PLoS One
.
2012
;
7
(
6
):
e38733
.
25.
Lewis
BW
,
Amici
SA
,
Kim
HY
,
Shalosky
EM
,
Khan
AQ
,
Walum
J
, et al
.
PRMT5 in T Cells drives Th17 responses, mixed granulocytic inflammation, and severe allergic airway inflammation
.
J Immunol
.
2022
;
208
(
7
):
1525
33
.
26.
Guerau-de-Arellano
M
,
Britt
RD
Jr
.
Sterols in asthma
.
Trends Immunol
.
2022
;
43
(
10
):
792
9
.
27.
Saha
AK
,
Mousavi
M
,
Dallo
SF
,
Evani
SJ
,
Ramasubramanian
AK
.
Influence of membrane cholesterol on monocyte chemotaxis
.
Cell Immunol
.
2018
;
324
:
74
7
.
28.
Foster
GA
,
Xu
L
,
Chidambaram
AA
,
Soderberg
SR
,
Armstrong
EJ
,
Wu
H
, et al
.
CD11c/CD18 signals very late antigen-4 activation to initiate foamy monocyte recruitment during the onset of hypercholesterolemia
.
J Immunol
.
2015
;
195
(
11
):
5380
92
.
29.
Draijer
C
,
Peters-Golden
M
.
Alveolar macrophages in allergic asthma: the forgotten cell awakes
.
Curr Allergy Asthma Rep
.
2017
;
17
(
2
):
12
.
30.
Wenzel
SE
,
Tyurina
YY
,
Zhao
J
,
St Croix
CM
,
Dar
HH
,
Mao
G
, et al
.
PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals
.
Cell
.
2017
;
171
(
3
):
628
41.e26
.
31.
Zhao
J
,
O’Donnell
VB
,
Balzar
S
,
St Croix
CM
,
Trudeau
JB
,
Wenzel
SE
.
15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells
.
Proc Natl Acad Sci USA
.
2011
;
108
(
34
):
14246
51
.
32.
Boyce
JA
.
The role of 15 lipoxygenase 1 in asthma comes into focus
.
J Clin Invest
.
2022
;
132
(
1
):
e155884
.
33.
Hough
KP
,
Wilson
LS
,
Trevor
JL
,
Strenkowski
JG
,
Maina
N
,
Kim
YI
, et al
.
Unique lipid signatures of extracellular vesicles from the airways of asthmatics
.
Sci Rep
.
2018
;
8
(
1
):
10340
.
34.
Zenarruzabeitia
O
,
Vitallé
J
,
Eguizabal
C
,
Simhadri
VR
,
Borrego
F
.
The biology and disease relevance of CD300a, an inhibitory receptor for phosphatidylserine and phosphatidylethanolamine
.
J Immunol
.
2015
;
194
(
11
):
5053
60
.
35.
Karra
L
,
Singh Gangwar
R
,
Shamri
R
,
Puzzovio
PG
,
Cohen-Mor
S
,
Levy
BD
, et al
.
Leukocyte CD300a contributes to the resolution of murine allergic inflammation
.
J Immunol
.
2018
;
201
(
10
):
2998
3005
.
36.
Munitz
A
,
Bachelet
I
,
Levi-Schaffer
F
.
Reversal of airway inflammation and remodeling in asthma by a bispecific antibody fragment linking CCR3 to CD300a
.
J Allergy Clin Immunol
.
2006
;
118
(
5
):
1082
9
.
37.
Miki
H
,
Nakahashi-Oda
C
,
Sumida
T
,
Shibuya
A
.
Involvement of CD300a phosphatidylserine immunoreceptor in aluminum salt adjuvant-induced Th2 responses
.
J Immunol
.
2015
;
194
(
11
):
5069
76
.
38.
Pascoe
CD
,
Jha
A
,
Ryu
MH
,
Ragheb
M
,
Vaghasiya
J
,
Basu
S
, et al
.
Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction
.
Eur Respir J
.
2021
;
57
(
2
):
2000839
.
39.
Ho
WE
,
Xu
YJ
,
Xu
F
,
Cheng
C
,
Peh
HY
,
Tannenbaum
SR
, et al
.
Metabolomics reveals altered metabolic pathways in experimental asthma
.
Am J Respir Cell Mol Biol
.
2013
;
48
(
2
):
204
11
.
40.
Kertys
M
,
Grendar
M
,
Kosutova
P
,
Mokra
D
,
Mokry
J
.
Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in Guinea pig model of allergic asthma
.
Biochim Biophys Acta, Mol Basis Dis
.
2020
;
1866
(
1
):
165572
.
41.
Bansal
P
,
Gaur
SN
,
Arora
N
.
Lysophosphatidylcholine plays critical role in allergic airway disease manifestation
.
Sci Rep
.
2016
;
6
:
27430
.
42.
Trakaki
A
,
Sturm
GJ
,
Pregartner
G
,
Scharnagl
H
,
Eichmann
TO
,
Trieb
M
, et al
.
Allergic rhinitis is associated with complex alterations in high-density lipoprotein composition and function
.
Biochim Biophys Acta Mol Cell Biol Lipids
.
2019
;
1864
(
10
):
1280
92
.
43.
De Craene
JO
,
Bertazzi
DL
,
Bär
S
,
Friant
S
.
Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways
.
Int J Mol Sci
.
2017
;
18
(
3
):
634
.
44.
Horak
F
,
Puri
KD
,
Steiner
BH
,
Holes
L
,
Xing
G
,
Zieglmayer
P
, et al
.
Randomized phase 1 study of the phosphatidylinositol 3-kinase δ inhibitor idelalisib in patients with allergic rhinitis
.
J Allergy Clin Immunol
.
2016
;
137
(
6
):
1733
41
.
45.
Ali
K
,
Camps
M
,
Pearce
WP
,
Ji
H
,
Rückle
T
,
Kuehn
N
, et al
.
Isoform-specific functions of phosphoinositide 3-kinases: p110 delta but not p110 gamma promotes optimal allergic responses in vivo
.
J Immunol
.
2008
;
180
(
4
):
2538
44
.
46.
Zhang
Y
,
Zhang
Q
,
Wu
X
,
Wu
G
,
Ma
X
,
Cheng
L
.
Bicalutamide, an androgen receptor antagonist, effectively alleviate allergic rhinitis via suppression of PI3K-PKB activity
.
Eur Arch Oto-Rhino-Laryngol
.
2023
;
280
(
2
):
703
11
.
47.
Kanagaratham
C
,
Sallis
BF
,
Fiebiger
E
.
Experimental models for studying food allergy
.
Cell Mol Gastroenterol Hepatol
.
2018
;
6
(
3
):
356
69.e1
.
48.
Kumar
K
,
Lodha
R
,
Jat
KR
,
Jain
V
,
Kabra
SK
.
Prevalence of metabolic abnormalities and their association with asthma symptom control in children
.
Indian J Pediatr
.
2024
;
91
(
5
):
434
40
.
49.
Fenger
RV
,
Gonzalez-Quintela
A
,
Linneberg
A
,
Husemoen
LL
,
Thuesen
BH
,
Aadahl
M
, et al
.
The relationship of serum triglycerides, serum HDL, and obesity to the risk of wheezing in 85,555 adults
.
Respir Med
.
2013
;
107
(
6
):
816
24
.
You do not currently have access to this content.