Introduction: Immunotherapy has demonstrated encouraging outcomes in tackling lung adenocarcinoma (LUAD), but immune escape may bring negative impacts. Only a single study has demonstrated the function of AIM2 in LUAD and reported that NF-κB and STAT1 are the chief transcription factors, this study is designed to analyze the role of AIM2 and examine the transcription factor, BATF in LUAD immunotherapy. Methods: Bioinformatics methods to analyze the expression and binding sites of AIM2 and BATF in LUAD, as well as the correlation between AIM2 and PD-L1. Dual-luciferase and chromatin immunoprecipitation assays were used to verify the binding of AIM2 and BATF. qRT-PCR and Western blot assayed expression of AIM2, BATF, and PD-L1 in LUAD. MTT measured cell viability, flow cytometry detected cell apoptosis, cytotoxicity assays measured the toxicity of CD8+ T cells to cancer cells, and enzyme-linked immunosorbent assay measured the expression of related cytokines. Immunohistochemistry detected the protein expression levels of AIM2, BATF, PD-L1, and CD8 in tumor tissue. Results: AIM2 and BATF were both highly expressed in LUAD, and there was a targeted binding relationship. BATF promoted LUAD cell proliferation and inhibited apoptosis by affecting AIM2 expression. The downregulation of AIM2 and PD-L1 expression inhibited PD-L1 and activated CD8+ T cells. The rescue experiment manifested that increased BATF weakened repression of AIM2 silencing on LUAD tumor immune escape in vitro and in vivo. Conclusion: BATF promoted AIM2 expression, upregulated PD-L1, inhibited CD8+ T cell activity, and ultimately led to immune escape in LUAD. Our research uncovered an innovative outlook on the intricate regulation of immune checkpoint molecules and proposed a new approach to target the BATF/AIM2 axis in tumor immunotherapy.

1.
Succony
L
,
Rassl
DM
,
Barker
AP
,
McCaughan
FM
,
Rintoul
RC
.
Adenocarcinoma spectrum lesions of the lung: detection, pathology and treatment strategies
.
Cancer Treat Rev
.
2021
;
99
:
102237
.
2.
Duruisseaux
M
,
Esteller
M
.
Lung cancer epigenetics: from knowledge to applications
.
Semin Cancer Biol
.
2018
;
51
:
116
28
.
3.
Cho
BC
,
Abreu
DR
,
Hussein
M
,
Cobo
M
,
Patel
AJ
,
Secen
N
, et al
.
Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study
.
Lancet Oncol
.
2022
;
23
(
6
):
781
92
.
4.
Zhang
J
,
Han
X
,
Lin
L
,
Chen
J
,
Wang
F
,
Ding
Q
, et al
.
Unraveling the expression patterns of immune checkpoints identifies new subtypes and emerging therapeutic indicators in lung adenocarcinoma
.
Oxid Med Cell Longev
.
2022
;
2022
:
3583985
.
5.
Grosser
R
,
Cherkassky
L
,
Chintala
N
,
Adusumilli
PS
.
Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors
.
Cancer Cell
.
2019
;
36
(
5
):
471
82
.
6.
Zugazagoitia
J
,
Guedes
C
,
Ponce
S
,
Ferrer
I
,
Molina-Pinelo
S
,
Paz-Ares
L
.
Current challenges in cancer treatment
.
Clin Ther
.
2016
;
38
(
7
):
1551
66
.
7.
Liu
X
,
Hogg
GD
,
DeNardo
DG
.
Rethinking immune checkpoint blockade: Beyond the T cell
.
J Immunother Cancer
.
2021
;
9
(
1
):
e001460
.
8.
Wu
Y
,
Chen
W
,
Xu
ZP
,
Gu
W
.
PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition
.
Front Immunol
.
2019
;
10
:
2022
.
9.
Zhou
Y
,
Liang
Z
,
Xia
Y
,
Li
S
,
Liang
J
,
Hu
Z
, et al
.
Disruption of RBMS3 suppresses PD-L1 and enhances antitumor immune activities and therapeutic effects of auranofin against triple-negative breast cancer
.
Chem Biol Interact
.
2023
;
369
:
110260
.
10.
Zhu
J
,
Li
Y
,
Lv
X
.
IL4I1 enhances PD-L1 expression through JAK/STAT signaling pathway in lung adenocarcinoma
.
Immunogenetics
.
2023
;
75
(
1
):
17
25
.
11.
Zhu
P
,
Jin
Z
,
Kang
G
,
Jia
Y
,
Liu
D
,
Zhang
Q
, et al
.
Alpha5 nicotinic acetylcholine receptor mediated immune escape of lung adenocarcinoma via STAT3/Jab1-PD-L1 signalling
.
Cell Commun Signal
.
2022
;
20
(
1
):
121
.
12.
DeYoung
KL
,
Ray
ME
,
Su
YA
,
Anzick
SL
,
Johnstone
RW
,
Trapani
JA
, et al
.
Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma
.
Oncogene
.
1997
;
15
(
4
):
453
7
.
13.
Fernandes-Alnemri
T
,
Yu
JW
,
Datta
P
,
Wu
J
,
Alnemri
ES
.
AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA
.
Nature
.
2009
;
458
(
7237
):
509
13
.
14.
Hornung
V
,
Ablasser
A
,
Charrel-Dennis
M
,
Bauernfeind
F
,
Horvath
G
,
Caffrey
DR
, et al
.
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
.
Nature
.
2009
;
458
(
7237
):
514
8
.
15.
Zhou
H
,
Zhang
L
,
Luo
W
,
Hong
H
,
Tang
D
,
Zhou
D
, et al
.
AIM2 inflammasome activation benefits the therapeutic effect of BCG in bladder carcinoma
.
Front Pharmacol
.
2022
;
13
:
1050774
.
16.
Chen
IF
,
Ou-Yang
F
,
Hung
JY
,
Liu
JC
,
Wang
H
,
Wang
SC
, et al
.
AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model
.
Mol Cancer Ther
.
2006
;
5
(
1
):
1
7
.
17.
Zheng
JQ
,
Lin
CH
,
Lee
HH
,
Chang
WM
,
Li
LJ
,
Su
CY
, et al
.
AIM2 upregulation promotes metastatic progression and PD-L1 expression in lung adenocarcinoma
.
Cancer Sci
.
2023
;
114
(
1
):
306
20
.
18.
Zhou
C
,
Wei
W
,
Ma
J
,
Yang
Y
,
Liang
L
,
Zhang
Y
, et al
.
Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels
.
Mol Ther
.
2021
;
29
(
4
):
1512
28
.
19.
Tian
P
,
Wei
JX
,
Li
J
,
Ren
JK
,
Yang
JJ
.
LncRNA SNHG1 regulates immune escape of renal cell carcinoma by targeting miR-129-3p to activate STAT3 and PD-L1
.
Cell Biol Int
.
2021
;
45
(
7
):
1546
60
.
20.
Wang
P
,
Zhu
M
,
Zhang
D
,
Guo
XG
,
Zhao
S
,
Zhang
XL
, et al
.
The relationship between chronic obstructive pulmonary disease and non-small cell lung cancer in the elderly
.
Cancer Med
.
2019
;
8
(
9
):
4124
34
.
21.
Shah
S
,
Qin
S
,
Luo
Y
,
Huang
Y
,
Jing
R
,
Shah
JN
, et al
.
AIM2 inhibits BRAF-mutant colorectal cancer growth in a caspase-1-dependent manner
.
Front Cell Dev Biol
.
2021
;
9
:
588278
.
22.
El-Zaatari
M
,
Bishu
S
,
Zhang
M
,
Grasberger
H
,
Hou
G
,
Haley
H
, et al
.
Aim2-mediated/IFN-β-independent regulation of gastric metaplastic lesions via CD8+ T cells
.
JCI Insight
.
2020
;
5
(
5
):
e94035
.
23.
Bonnefoy
N
,
Olive
D
,
Vanhove
B
.
Les futures générations d’anticorps modulateurs des points de contrôle de la réponse immunitaire
.
Med Sci
.
2019
;
35
(
12
):
966
74
.
24.
Hegde
PS
,
Chen
DS
.
Top 10 challenges in cancer immunotherapy
.
Immunity
.
2020
;
52
(
1
):
17
35
.
25.
Hayashi
H
,
Nakagawa
K
.
Combination therapy with PD-1 or PD-L1 inhibitors for cancer
.
Int J Clin Oncol
.
2020
;
25
(
5
):
818
30
.
26.
Ju
X
,
Zhang
H
,
Zhou
Z
,
Wang
Q
.
Regulation of PD-L1 expression in cancer and clinical implications in immunotherapy
.
Am J Cancer Res
.
2020
;
10
(
1
):
1
11
.
27.
Chen
S
,
Crabill
GA
,
Pritchard
TS
,
McMiller
TL
,
Wei
P
,
Pardoll
DM
, et al
.
Mechanisms regulating PD-L1 expression on tumor and immune cells
.
J Immunother Cancer
.
2019
;
7
(
1
):
305
.
28.
Choubey
D
.
Absent in melanoma 2 proteins in the development of cancer
.
Cell Mol Life Sci
.
2016
;
73
(
23
):
4383
95
.
29.
Karki
R
,
Man
SM
,
Kanneganti
TD
.
Inflammasomes and cancer
.
Cancer Immunol Res
.
2017
;
5
(
2
):
94
9
.
30.
Feng
X
,
Song
Z
,
Huang
Q
,
Jia
J
,
Zhang
L
,
Zhu
M
, et al
.
AIM2 promotes gastric cancer cell proliferation via the MAPK signaling pathway
.
J Healthc Eng
.
2022
;
2022
:
8756844
.
31.
Jabeen
R
,
Goswami
R
,
Awe
O
,
Kulkarni
A
,
Nguyen
ET
,
Attenasio
A
, et al
.
Th9 cell development requires a BATF-regulated transcriptional network
.
J Clin Invest
.
2013
;
123
(
11
):
4641
53
.
32.
Murphy
TL
,
Tussiwand
R
,
Murphy
KM
.
Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks
.
Nat Rev Immunol
.
2013
;
13
(
7
):
499
509
.
33.
Hernandez
JM
,
Floyd
DH
,
Weilbaecher
KN
,
Green
PL
,
Boris-Lawrie
K
.
Multiple facets of junD gene expression are atypical among AP-1 family members
.
Oncogene
.
2008
;
27
(
35
):
4757
67
.
34.
Schleussner
N
,
Merkel
O
,
Costanza
M
,
Liang
HC
,
Hummel
F
,
Romagnani
C
, et al
.
The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma
.
Leukemia
.
2018
;
32
(
9
):
1994
2007
.
35.
Ataide
MA
,
Komander
K
,
Knopper
K
,
Peters
AE
,
Wu
H
,
Eickhoff
S
, et al
.
BATF3 programs CD8(+) T cell memory
.
Nat Immunol
.
2020
;
21
(
11
):
1397
407
.
36.
Anderson
DA
3rd
,
Murphy
TL
,
Eisenman
RN
,
Murphy
KM
.
The MYCL and MXD1 transcription factors regulate the fitness of murine dendritic cells
.
Proc Natl Acad Sci USA
.
2020
;
117
(
9
):
4885
93
.
37.
Irfan Afridi
M
,
Zheng
Z
,
Liu
J
,
Liu
L
,
Zhang
S
,
Zhu
Z
, et al
.
The bZIP transcription factor BATF3/ZIP-10 suppresses innate immunity by attenuating PMK-1/p38 signaling
.
Int Immunol
.
2023
;
35
(
4
):
181
96
.
You do not currently have access to this content.