Introduction: The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. Methods: Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson’s correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. Results: Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. Conclusion: Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.

1.
Qiu
H
,
Cao
S
,
Xu
R
.
Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020
.
Cancer Commun
.
2021
;
41
(
10
):
1037
48
.
2.
Hirsch
FR
,
Scagliotti
GV
,
Mulshine
JL
,
Kwon
R
,
Curran
WJ
Jr.
,
Wu
YL
, et al
.
Lung cancer: current therapies and new targeted treatments
.
Lancet
.
2017
;
389
(
10066
):
299
311
.
3.
Zhang
Y
,
Du
W
,
Chen
Z
,
Xiang
C
.
Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma
.
Exp Cell Res
.
2017
;
359
(
2
):
449
57
.
4.
Tian
Y
,
Zhai
X
,
Yan
W
,
Zhu
H
,
Yu
J
.
Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC
.
Cancer Med
.
2021
;
10
(
1
):
3
14
.
5.
Shao
L
,
He
Q
,
Wang
J
,
He
F
,
Lin
S
,
Wu
L
, et al
.
MicroRNA-326 attenuates immune escape and prevents metastasis in lung adenocarcinoma by targeting PD-L1 and B7-H3
.
Cell Death Discov
.
2021
;
7
(
1
):
145
.
6.
Rotman
J
,
den Otter
LAS
,
Bleeker
MCG
,
Samuels
SS
,
Heeren
AM
,
Roemer
MGM
, et al
.
PD-L1 and PD-L2 expression in cervical cancer: regulation and biomarker potential
.
Front Immunol
.
2020
;
11
:
596825
.
7.
Ahmad
SM
,
Borch
TH
,
Hansen
M
,
Andersen
MH
.
PD-L1-specific T cells
.
Cancer Immunol Immunother
.
2016
;
65
(
7
):
797
804
.
8.
Wang
X
,
Teng
F
,
Kong
L
,
Yu
J
.
PD-L1 expression in human cancers and its association with clinical outcomes
.
Onco Targets Ther
.
2016
;
9
:
5023
39
.
9.
Ying
H
,
Zhang
X
,
Duan
Y
,
Lao
M
,
Xu
J
,
Yang
H
, et al
.
Non-cytomembrane PD-L1: an atypical target for cancer
.
Pharmacol Res
.
2021
;
170
:
105741
.
10.
Wang
Y
,
Gu
T
,
Tian
X
,
Li
W
,
Zhao
R
,
Yang
W
, et al
.
A small molecule antagonist of PD-1/PD-L1 interactions acts as an immune checkpoint inhibitor for NSCLC and melanoma immunotherapy
.
Front Immunol
.
2021
;
12
:
654463
.
11.
Zong
Z
,
Zou
J
,
Mao
R
,
Ma
C
,
Li
N
,
Wang
J
, et al
.
M1 macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1β signaling
.
Front Immunol
.
2019
;
10
:
1643
.
12.
Matsubara
T
,
Seto
T
,
Takamori
S
,
Fujishita
T
,
Toyozawa
R
,
Ito
K
, et al
.
Anti-PD-1 monotherapy for advanced NSCLC patients with older age or those with poor performance status
.
Onco Targets Ther
.
2021
;
14
:
1961
8
.
13.
Yan
M
,
Wang
C
,
He
B
,
Yang
M
,
Tong
M
,
Long
Z
, et al
.
Aurora-A kinase: a potent oncogene and target for cancer therapy
.
Med Res Rev
.
2016
;
36
(
6
):
1036
79
.
14.
Sun
S
,
Zhou
W
,
Li
X
,
Peng
F
,
Yan
M
,
Zhan
Y
, et al
.
Nuclear Aurora kinase A triggers programmed death-ligand 1-mediated immune suppression by activating MYC transcription in triple-negative breast cancer
.
Cancer Commun
.
2021
;
41
(
9
):
851
66
.
15.
Yang
R
,
Li
P
,
Wang
D
,
Wang
L
,
Yin
J
,
Yu
B
, et al
.
Genetic and immune characteristics of multiple primary lung cancers and lung metastases
.
Thorac Cancer
.
2021
;
12
(
19
):
2544
50
.
16.
Wang
J
,
Hu
T
,
Wang
Q
,
Chen
R
,
Xie
Y
,
Chang
H
, et al
.
Repression of the AURKA-CXCL5 axis induces autophagic cell death and promotes radiosensitivity in non-small-cell lung cancer
.
Cancer Lett
.
2021
;
509
:
89
104
.
17.
Long
S
,
Zhang
XF
.
AURKA is a prognostic potential therapeutic target in skin cutaneous melanoma modulating the tumor microenvironment, apoptosis, and hypoxia
.
J Cancer Res Clin Oncol
.
2023
;
149
(
7
):
3089
107
.
18.
Jiang
D
,
Chen
H
,
Cao
J
,
Chen
Y
,
Huang
J
,
Weng
Y
.
AURKA, as a potential prognostic biomarker, regulates autophagy and immune infiltration in nasopharyngeal carcinoma
.
Immunobiology
.
2023
;
228
(
2
):
152314
.
19.
Zeng
S
,
Seifert
AM
,
Zhang
JQ
,
Kim
TS
,
Bowler
TG
,
Cavnar
MJ
, et al
.
ETV4 collaborates with Wnt/β-catenin signaling to alter cell cycle activity and promote tumor aggressiveness in gastrointestinal stromal tumor
.
Oncotarget
.
2017
;
8
(
69
):
114195
209
.
20.
Zhu
T
,
Zheng
J
,
Zhuo
W
,
Pan
P
,
Li
M
,
Zhang
W
, et al
.
ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling
.
Cell Death Discov
.
2021
;
7
(
1
):
126
.
21.
Wang
Y
,
Ding
X
,
Liu
B
,
Li
M
,
Chang
Y
,
Shen
H
, et al
.
ETV4 overexpression promotes progression of non-small cell lung cancer by upregulating PXN and MMP1 transcriptionally
.
Mol Carcinog
.
2020
;
59
(
1
):
73
86
.
22.
Dumortier
M
,
Ladam
F
,
Damour
I
,
Vacher
S
,
Bieche
I
,
Marchand
N
, et al
.
ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis
.
Breast Cancer Res
.
2018
;
20
(
1
):
73
.
23.
Yao
D
,
Bao
Z
,
Qian
X
,
Yang
Y
,
Mao
Z
.
ETV4 transcriptionally activates HES1 and promotes Stat3 phosphorylation to promote malignant behaviors of colon adenocarcinoma
.
Cell Biol Int
.
2021
;
45
(
10
):
2129
39
.
24.
Zhang
Q
,
Liu
S
,
Wang
H
,
Xiao
K
,
Lu
J
,
Chen
S
, et al
.
ETV4 mediated tumor-associated neutrophil infiltration facilitates lymphangiogenesis and lymphatic metastasis of bladder cancer
.
Adv Sci
.
2023
;
10
(
11
):
e2205613
.
25.
Xie
M
,
Lin
Z
,
Ji
X
,
Luo
X
,
Zhang
Z
,
Sun
M
, et al
.
FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2
.
J Hepatol
.
2023
;
79
(
1
):
109
25
.
26.
Tian
P
,
Wei
JX
,
Li
J
,
Ren
JK
,
Yang
JJ
.
LncRNA SNHG1 regulates immune escape of renal cell carcinoma by targeting miR-129-3p to activate STAT3 and PD-L1
.
Cell Biol Int
.
2021
;
45
(
7
):
1546
60
.
27.
Prestipino
A
,
Emhardt
AJ
,
Aumann
K
,
O'Sullivan
D
,
Gorantla
SP
,
Duquesne
S
, et al
.
Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms
.
Sci Transl Med
.
2018
;
10
(
429
):
eaam7729
.
28.
Jing
D
,
Wu
W
,
Chen
X
,
Xiao
H
,
Zhang
Z
,
Chen
F
, et al
.
Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the JH2 domain of JAK2 via the JAK2-STAT3-PDL1
.
Pharmacol Res
.
2022
;
182
:
106287
.
29.
McWilliams
A
,
Tammemagi
MC
,
Mayo
JR
,
Roberts
H
,
Liu
G
,
Soghrati
K
, et al
.
Probability of cancer in pulmonary nodules detected on first screening CT
.
N Engl J Med
.
2013
;
369
(
10
):
910
9
.
30.
Reuben
A
,
Zhang
J
,
Chiou
SH
,
Gittelman
RM
,
Li
J
,
Lee
WC
, et al
.
Comprehensive T cell repertoire characterization of non-small cell lung cancer
.
Nat Commun
.
2020
;
11
(
1
):
603
.
31.
Fang
W
,
Zhou
T
,
Shi
H
,
Yao
M
,
Zhang
D
,
Qian
H
, et al
.
Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on Tumor-Associated Macrophages (TAMs) and promoting CD8(+) T cell exclusion
.
J Exp Clin Cancer Res
.
2021
;
40
(
1
):
4
.
32.
Snyder
A
,
Makarov
V
,
Merghoub
T
,
Yuan
J
,
Zaretsky
JM
,
Desrichard
A
, et al
.
Genetic basis for clinical response to CTLA-4 blockade in melanoma
.
N Engl J Med
.
2014
;
371
(
23
):
2189
99
.
33.
Jiang
X
,
Wang
J
,
Deng
X
,
Xiong
F
,
Ge
J
,
Xiang
B
, et al
.
Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape
.
Mol Cancer
.
2019
;
18
(
1
):
10
.
34.
Wang
X
,
Huang
J
,
Liu
F
,
Yu
Q
,
Wang
R
,
Wang
J
, et al
.
Aurora A kinase inhibition compromises its antitumor efficacy by elevating PD-L1 expression
.
J Clin Invest
.
2023
;
133
(
9
):
e161929
.
35.
Cao
J
,
Dong
R
,
Jiang
L
,
Gong
Y
,
Yuan
M
,
You
J
, et al
.
LncRNA-MM2P identified as a modulator of macrophage M2 polarization
.
Cancer Immunol Res
.
2019
;
7
(
2
):
292
305
.
36.
Lim
SO
,
Li
CW
,
Xia
W
,
Cha
JH
,
Chan
LC
,
Wu
Y
, et al
.
Deubiquitination and stabilization of PD-L1 by CSN5
.
Cancer Cell
.
2016
;
30
(
6
):
925
39
.
37.
Kearney
CJ
,
Vervoort
SJ
,
Hogg
SJ
,
Ramsbottom
KM
,
Freeman
AJ
,
Lalaoui
N
, et al
.
Tumor immune evasion arises through loss of TNF sensitivity
.
Sci Immunol
.
2018
;
3
(
23
):
eaar3451
.
38.
Zhao
Y
,
Zhang
Q
,
Tu
K
,
Chen
Y
,
Peng
Y
,
Ni
Y
, et al
.
Single-cell transcriptomics of immune cells reveal diversity and exhaustion signatures in non-small-cell lung cancer
.
Front Immunol
.
2022
;
13
:
854724
.
39.
Zhang
R
,
Peng
Y
,
Gao
Z
,
Qian
J
,
Yang
K
,
Wang
X
, et al
.
Oncogenic role and drug sensitivity of ETV4 in human tumors: a pan-cancer analysis
.
Front Oncol
.
2023
;
13
:
1121258
.
40.
Xu
X
,
Wang
B
,
Liu
Y
,
Jing
T
,
Xu
G
,
Zhang
L
, et al
.
ETV4 potentiates nuclear YAP retention and activities to enhance the progression of hepatocellular carcinoma
.
Cancer Lett
.
2022
;
537
:
215640
.
41.
Wen
J
,
Chang
X
,
Bai
B
,
Gao
Q
,
Zhao
Y
.
Orexin A suppresses the expression of exosomal PD-L1 in colon cancer and promotes T cell activity by inhibiting JAK2/STAT3 signaling pathway
.
Dig Dis Sci
.
2022
;
67
(
6
):
2173
81
.
42.
Coricello
A
,
Mesiti
F
,
Lupia
A
,
Maruca
A
,
Alcaro
S
.
Inside perspective of the synthetic and computational toolbox of JAK inhibitors: recent updates
.
Molecules
.
2020
;
25
(
15
):
3321
.
43.
Huang
B
,
Lang
X
,
Li
X
.
The role of IL-6/JAK2/STAT3 signaling pathway in cancers
.
Front Oncol
.
2022
;
12
:
1023177
.
44.
Wang
K
,
Wang
J
,
Liu
T
,
Yu
W
,
Dong
N
,
Zhang
C
, et al
.
Morphine-3-glucuronide upregulates PD-L1 expression via TLR4 and promotes the immune escape of non-small cell lung cancer
.
Cancer Biol Med
.
2021
;
18
(
1
):
155
71
.
45.
Wu
X
,
Tao
P
,
Zhou
Q
,
Li
J
,
Yu
Z
,
Wang
X
, et al
.
IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway
.
Oncotarget
.
2017
;
8
(
13
):
20741
50
.
You do not currently have access to this content.