Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is an immunologic disease, and pyroptosis, an inflammation-based cellular death, strictly modulates CRSwNP pathology, whereas the pyroptosis genes and mechanisms involved in CRSwNP remain unclear. Herein, we explored disease biomarkers and potential therapeutic targets for pyroptosis and immune regulation in CRSwNP using bioinformatics analysis and tissue-based verification. Methods: We retrieved the transcriptional profiles of the high-throughput dataset GSE136825 from the Gene Expression Omnibus database, as well as 170 pyroptosis-related gene expressions from GeneCards. Using R, we identified differentially expressed pyroptosis-related genes and examined the potential biological functions of the aforementioned genes using Gene Ontology, Kyoto Encyclopedia of the Genome pathway, immune infiltration, and protein-protein interaction (PPI) network analyses, thereby generating a list of hub genes. The hub genes were, in turn, verified using real-time quantitative polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and Western blotting (WB). Ultimately, using the StarBase and miRTarBase databases, we estimated the targeting microRNAs and long chain non-coding RNAs. Results: We demonstrated that the identified pyroptosis-related genes primarily modulated bacterial defense activities, as well as inflammasome immune response and assembly. Moreover, they were intricately linked to neutrophil and macrophage infiltration. Furthermore, we validated the tissue contents of hub genes AIM2, NLPR6, and CASP5 and examined potential associations with clinical variables. We also developed a competitive endogenous RNA (ceRNA) modulatory axis to examine possible underlying molecular mechanisms. Conclusion: We found AIM2, CASP5, and NLRP6, three hub genes for pyroptosis in chronic rhinosinusitis with nasal polyps, by biological analysis, experimental validation, and clinical variable validation.

1.
Fokkens
WJ
,
Lund
VJ
,
Hopkins
C
,
Hellings
PW
,
Kern
R
,
Reitsma
S
, et al
.
European position paper on rhinosinusitis and nasal polyps 2020
.
Rhinology
.
2020
;
58
(
Suppl S29
):
1
464
. .
2.
McCormick
JP
,
Thompson
HM
,
Cho
DY
,
Woodworth
BA
,
Grayson
JW
.
Phenotypes in chronic rhinosinusitis
.
Curr Allergy Asthma Rep
.
2020
;
20
(
7
):
20
. .
3.
Shi
JB
,
Fu
QL
,
Zhang
H
,
Cheng
L
,
Wang
YJ
,
Zhu
DD
, et al
.
Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities
.
Allergy
.
2015
;
70
(
5
):
533
9
. .
4.
Cho
SH
,
Hamilos
DL
,
Han
DH
,
Laidlaw
TM
.
Phenotypes of chronic rhinosinusitis
.
J Allergy Clin Immunol Pract
.
2020
;
8
(
5
):
1505
11
. .
5.
Xu
X
,
Reitsma
S
,
Wang
Y
,
Fokkens
WJ
.
Highlights in the advances of chronic rhinosinusitis
.
Allergy
.
2021
;
76
(
11
):
3349
58
. .
6.
Wei
X
,
Xie
F
,
Zhou
X
,
Wu
Y
,
Yan
H
,
Liu
T
, et al
.
Role of pyroptosis in inflammation and cancer
.
Cell Mol Immunol
.
2022
;
19
(
9
):
971
92
. .
7.
Liu
Z
,
Wang
C
,
Lin
C
.
Pyroptosis as a double-edged sword: the pathogenic and therapeutic roles in inflammatory diseases and cancers
.
Life Sci
.
2023
;
318
:
121498
. .
8.
Shi
J
,
Zhao
Y
,
Wang
K
,
Shi
X
,
Wang
Y
,
Huang
H
, et al
.
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
.
Nature
.
2015
;
526
(
7575
):
660
5
. .
9.
Kesavardhana
S
,
Malireddi
RK
,
Kanneganti
TD
.
Caspases in cell death, inflammation, and pyroptosis
.
Annu Rev Immunol
.
2020
;
38
:
567
95
. .
10.
Rao
Z
,
Zhu
Y
,
Yang
P
,
Chen
Z
,
Xia
Y
,
Qiao
C
, et al
.
Pyroptosis in inflammatory diseases and cancer
.
Theranostics
.
2022
;
12
(
9
):
4310
29
. .
11.
Wei
S
,
Feng
M
,
Zhang
S
.
Molecular characteristics of cell pyroptosis and its inhibitors: a review of activation, regulation, and inhibitors
.
Int J Mol Sci
.
2022
;
23
(
24
):
16115
. .
12.
Liu
T
,
Zhou
YT
,
Wang
LQ
,
Li
Y
,
Bao
Q
,
Tian
S
, et al
.
NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection
.
J Allergy Clin Immunol
.
2019
;
144
:
777
87.e9
. .
13.
Triantafilou
K
,
Kar
S
,
van Kuppeveld
FJM
,
Triantafilou
M
.
Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells
.
Am J Respir Cell Mol Biol
.
2013
;
49
(
6
):
923
34
. .
14.
Wei
Y
,
Zhang
J
,
Wu
X
,
Sun
W
,
Wei
F
,
Liu
W
, et al
.
Activated pyrin domain containing 3 (NLRP3) inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps (CRSwNP)
.
J Allergy Clin Immunol
.
2020
;
145
:
1002
5.e16
. .
15.
Lin
H
,
Li
Z
,
Lin
D
,
Zheng
C
,
Zhang
W
.
Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps
.
Inflammation
.
2016
;
39
(
6
):
2045
52
. .
16.
Li
Y
,
Chang
LH
,
Huang
WQ
,
Bao
HW
,
Li
X
,
Chen
XH
, et al
.
IL-17A mediates pyroptosis via the ERK pathway and contributes to steroid resistance in CRSwNP
.
J Allergy Clin Immunol
.
2022
;
150
(
2
):
337
51
. .
17.
Peng
Y
,
Zi
XX
,
Tian
TF
,
Lee
B
,
Lum
J
,
Tang
SA
, et al
.
Whole-transcriptome sequencing reveals heightened inflammation and defective host defence responses in chronic rhinosinusitis with nasal polyps
.
Eur Respir J
.
2019
;
54
(
5
):
1900732
. .
18.
Ritchie
ME
,
Phipson
B
,
Wu
DI
,
Hu
Y
,
Law
CW
,
Shi
W
, et al
.
Limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
. .
19.
Deng
B
,
Liao
F
,
Liu
Y
,
He
P
,
Wei
S
,
Liu
C
, et al
.
Comprehensive analysis of endoplasmic reticulum stress-associated genes signature of ulcerative colitis
.
Front Immunol
.
2023
;
14
:
1158648
. .
20.
Szklarczyk
D
,
Kirsch
R
,
Koutrouli
M
,
Nastou
K
,
Mehryary
F
,
Hachilif
R
, et al
.
The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D638
46
. .
21.
Shannon
P
,
Markiel
A
,
Ozier
O
,
Baliga
NS
,
Wang
JT
,
Ramage
D
, et al
.
Cytoscape: a software environment for integrated models of biomolecular interaction networks
.
Genome Res
.
2003
;
13
(
11
):
2498
504
. .
22.
Chin
CH
,
Chen
SH
,
Wu
HH
,
Ho
C
,
Ko
M
,
Lin
C
.
CytoHubba: identifying hub objects and sub-networks from complex interactome
.
BMC Syst Biol
.
2014
;
8
(
Suppl 4
):
S11
. .
23.
Wang
M
,
Tang
S
,
Yang
X
,
Xie
X
,
Luo
Y
,
He
S
, et al
.
Identification of key genes and pathways in chronic rhinosinusitis with nasal polyps and asthma comorbidity using bioinformatics approaches
.
Front Immunol
.
2022
;
13
:
941547
. .
24.
Newman
AM
,
Liu
CL
,
Green
MR
,
Gentles
AJ
,
Feng
W
,
Xu
Y
, et al
.
Robust enumeration of cell subsets from tissue expression profiles
.
Nat Methods
.
2015
;
12
(
5
):
453
7
. .
25.
Kariuki
D
,
Asam
K
,
Aouizerat
BE
,
Lewis
KA
,
Florez
JC
,
Flowers
E
.
Review of databases for experimentally validated human microRNA-mRNA interactions
.
Database
.
2023
;
2023
:
baad014
. .
26.
Huang
HY
,
Lin
YC
,
Cui
S
,
Huang
Y
,
Tang
Y
,
Xu
J
, et al
.
miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D222
30
. .
27.
Ma
X
,
Lou
C
,
Pan
J
,
Zhou
C
,
Zhao
X
,
Li
N
, et al
.
The diagnostic potential of a circRNA-miRNA network in non-small cell lung cancer
.
J Mol Med
.
2023
;
101
(
6
):
671
84
. .
28.
Fokkens
W
,
Desrosiers
M
,
Harvey
R
,
Hopkins
C
,
Mullol
J
,
Philpott
C
, et al
.
EPOS2020: development strategy and goals for the latest European Position Paper on Rhinosinusitis
.
Rhinology
.
2019
;
57
(
3
):
162
8
. .
29.
Hamilos
DL
.
Chronic rhinosinusitis: epidemiology and medical management
.
J Allergy Clin Immunol
.
2011
;
128
(
4
):
693
709
. .
30.
Wang
L
,
Meng
J
,
Wang
C
,
Wang
Y
,
Yang
C
,
Li
Y
.
Hydrogen sulfide attenuates cigarette smoke-induced pyroptosis through the TLR4/NF-κB signaling pathway
.
Int J Mol Med
.
2022
;
49
(
5
):
56
. .
31.
Tsai
YM
,
Chiang
KH
,
Hung
JY
,
Chang
W
,
Lin
H
,
Shieh
J
, et al
.
Der f1 induces pyroptosis in human bronchial epithelia via the NLRP3 inflammasome
.
Int J Mol Med
.
2018
;
41
(
2
):
757
64
. .
32.
Zhuang
J
,
Cui
H
,
Zhuang
L
,
Zhai
Z
,
Yang
F
,
Luo
G
, et al
.
Bronchial epithelial pyroptosis promotes airway inflammation in a murine model of toluene diisocyanate-induced asthma
.
Biomed Pharmacother
.
2020
;
125
:
109925
. .
33.
Kim
RY
,
Pinkerton
JW
,
Essilfie
AT
,
Robertson
AAB
,
Baines
KJ
,
Brown
AC
, et al
.
Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma
.
Am J Respir Crit Care Med
.
2017
;
196
(
3
):
283
97
. .
34.
Zhu
Y
,
Sun
X
,
Tan
S
,
Luo
C
,
Zhou
J
,
Zhang
S
, et al
.
M2 macrophage-related gene signature in chronic rhinosinusitis with nasal polyps
.
Front Immunol
.
2022
;
13
:
1047930
. .
35.
Pan
Y
,
Wu
L
,
He
S
,
Wu
J
,
Wang
T
,
Zang
H
.
Identification of hub genes and immune cell infiltration characteristics in chronic rhinosinusitis with nasal polyps: bioinformatics analysis and experimental validation
.
Front Mol Biosci
.
2022
;
9
:
843580
. .
36.
Huang
GJ
,
Liu
HB
.
Identification and validation of ferroptosis-related genes for chronic rhinosinusitis with nasal polyps
.
Eur Arch Oto-Rhino-Laryngol
.
2023
;
280
(
3
):
1501
8
. .
37.
Hornung
V
,
Ablasser
A
,
Charrel-Dennis
M
,
Bauernfeind
F
,
Horvath
G
,
Caffrey
DR
, et al
.
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
.
Nature
.
2009
;
458
(
7237
):
514
8
. .
38.
Wang
LQ
,
Liu
T
,
Yang
S
,
Sun
L
,
Zhao
ZY
,
Li
LY
, et al
.
Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome
.
Nat Commun
.
2021
;
12
(
1
):
2915
. .
39.
Wang
Y
,
Ning
X
,
Gao
P
,
Wu
S
,
Sha
M
,
Lv
M
, et al
.
Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection
.
Immunity
.
2017
;
46
(
3
):
393
404
. .
40.
Broz
P
.
Immunology: caspase target drives pyroptosis
.
Nature
.
2015
;
526
(
7575
):
642
3
. .
41.
Lorey
MB
,
Rossi
K
,
Eklund
KK
,
Nyman
TA
,
Matikainen
S
.
Global characterization of protein secretion from human macrophages following non-canonical caspase-4/5 inflammasome activation
.
Mol Cell Proteomics
.
2017
;
16
(
4 Suppl 1
):
S187
99
. .
42.
Zheng
D
,
Kern
L
,
Elinav
E
.
The NLRP6 inflammasome
.
Immunology
.
2021
;
162
(
3
):
281
9
. .
43.
Tao
Q
,
Xu
D
,
Jia
K
,
Cao
X
,
Ye
C
,
Xie
S
, et al
.
NLRP6 serves as a negative regulator of neutrophil recruitment and function during Streptococcus pneumoniae infection
.
Front Microbiol
.
2022
;
13
:
898559
. .
44.
Cai
S
,
Paudel
S
,
Jin
L
,
Ghimire
L
,
Taylor
CM
,
Wakamatsu
N
, et al
.
NLRP6 modulates neutrophil homeostasis in bacterial pneumonia-derived sepsis
.
Mucosal Immunol
.
2021
;
14
(
3
):
574
84
. .
45.
Dubyak
GR
,
Miller
BA
,
Pearlman
E
.
Pyroptosis in neutrophils: multimodal integration of inflammasome and regulated cell death signaling pathways
.
Immunol Rev
.
2023
;
314
(
1
):
229
49
. .
46.
Zhu
CL
,
Wang
Y
,
Liu
Q
,
Li
HR
,
Yu
CM
,
Li
P
, et al
.
Dysregulation of neutrophil death in sepsis
.
Front Immunol
.
2022
;
13
:
963955
. .
You do not currently have access to this content.