Introduction: Allergic disorders are common diseases marked by the abnormal immune response toward foreign antigens that are not pathogens. Often patients with food allergy also suffer from asthma and eczema. Given the similarities of these diseases and a shortage of effective treatments, developing novel therapeutics against common targets of multiple allergies would offer an efficient and cost-effective treatment for patients. Methods: We employed the artificial intelligence-driven target discovery platform, PandaOmics, to identify common targets for treating asthma, eczema, and food allergy. Thirty-two case-control comparisons were generated from 15, 11, and 6 transcriptomics datasets related to asthma (558 cases, 315 controls), eczema (441 cases, 371 controls), and food allergy (208 cases, 106 controls), respectively, and allocated into three meta-analyses for target identification. Top-100 high-confidence targets and Top-100 novel targets were prioritized by PandaOmics for each allergic disease. Results: Six common high-confidence targets (i.e., IL4R, IL5, JAK1, JAK2, JAK3, and NR3C1) across all three allergic diseases have approved drugs for treating asthma and eczema. Based on the targets’ dysregulated expression profiles and their mechanism of action in allergic diseases, three potential therapeutic targets were proposed. IL5 was selected as a high-confidence target due to its strong involvement in allergies. PTAFR was identified for drug repurposing, while RNF19B was selected as a novel target for therapeutic innovation. Analysis of the dysregulated pathways commonly identified across asthma, eczema, and food allergy revealed the well-characterized disease signature and novel biological processes that may underlie the pathophysiology of allergies. Conclusion: Altogether, our study dissects the shared pathophysiology of allergic disorders and reveals the power of artificial intelligence in the exploration of novel therapeutic targets.

1.
Nadeau
K
,
Barnett
S
The end of food allergy: the first program to prevent and reverse a 21st century epidemic
Avery
2020
.
2.
Panel Ni
SE
,
Boyce
JA
,
Assa’ad
A
,
Burks
AW
,
Jones
SM
,
Sampson
HA
.
Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel
.
J Allergy Clin Immunol
.
2010
126
6 Suppl
S1
58
.
3.
Yu
W
,
Freeland
DMH
,
Nadeau
KC
.
Food allergy: immune mechanisms, diagnosis and immunotherapy
.
Nat Rev Immunol
.
2016
;
16
(
12
):
751
65
.
4.
Sicherer
SH
,
Warren
CM
,
Dant
C
,
Gupta
RS
,
Nadeau
KC
.
Food allergy from infancy through adulthood
.
J Allergy Clin Immunol Pract
.
2020
;
8
(
6
):
1854
64
.
5.
Foong
RX
,
du Toit
G
,
Fox
AT
.
Asthma, food allergy, and how they relate to each other
.
Front Pediatr
.
2017
;
5
:
89
.
6.
Bergmann
MM
,
Caubet
JC
,
Boguniewicz
M
,
Eigenmann
PA
.
Evaluation of food allergy in patients with atopic dermatitis
.
J Allergy Clin Immunol Pract
.
2013
;
1
(
1
):
22
8
.
7.
Maiello
N
,
Comberiati
P
,
Giannetti
A
,
Ricci
G
,
Carello
R
,
Galli
E
.
New directions in understanding atopic march starting from atopic dermatitis
.
Children
.
2022
;
9
(
4
):
450
.
8.
You
Y
,
Lai
X
,
Pan
Y
,
Zheng
H
,
Vera
J
,
Liu
S
.
Artificial intelligence in cancer target identification and drug discovery
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
156
.
9.
Pun
FW
,
Leung
GHD
,
Leung
HW
,
Liu
BHM
,
Long
X
,
Ozerov
IV
.
Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine
.
Aging
.
2022
;
14
(
6
):
2475
506
.
10.
Pun
FW
,
Ozerov
IV
,
Zhavoronkov
A
.
AI-powered therapeutic target discovery
.
Trends Pharmacol Sci
.
2023
;
44
(
9
):
561
72
.
11.
Dara
S
,
Dhamercherla
S
,
Jadav
SS
,
Babu
CM
,
Ahsan
MJ
.
Machine learning in drug discovery: a review
.
Artif Intell Rev
.
2022
;
55
(
3
):
1947
99
.
12.
Zhang
Y
,
Ye
T
,
Xi
H
,
Juhas
M
,
Li
J
.
Deep learning driven drug discovery: tackling severe acute respiratory syndrome coronavirus 2
.
Front Microbiol
.
2021
;
12
:
739684
.
13.
Aliper
A
,
Plis
S
,
Artemov
A
,
Ulloa
A
,
Mamoshina
P
,
Zhavoronkov
A
.
Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data
.
Mol Pharm
.
2016
;
13
(
7
):
2524
30
.
14.
Zhavoronkov
A
,
Ivanenkov
YA
,
Aliper
A
,
Veselov
MS
,
Aladinskiy
VA
,
Aladinskaya
AV
.
Deep learning enables rapid identification of potent DDR1 kinase inhibitors
.
Nat Biotechnol
.
2019
;
37
(
9
):
1038
40
.
15.
Weissler
EH
,
Naumann
T
,
Andersson
T
,
Ranganath
R
,
Elemento
O
,
Luo
Y
.
The role of machine learning in clinical research: transforming the future of evidence generation
.
Trials
.
2021
;
22
(
1
):
537
.
16.
Pun
FW
,
Liu
BHM
,
Long
X
,
Leung
HW
,
Leung
GHD
,
Mewborne
QT
.
Identification of therapeutic targets for amyotrophic lateral sclerosis using PandaOmics - an AI-enabled biological target discovery platform
.
Front Aging Neurosci
.
2022
;
14
:
914017
.
17.
Ozerov
IV
,
Lezhnina
KV
,
Izumchenko
E
,
Artemov
AV
,
Medintsev
S
,
Vanhaelen
Q
.
In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development
.
Nat Commun
.
2016
;
7
:
13427
.
18.
Sidiropoulos
K
,
Viteri
G
,
Sevilla
C
,
Jupe
S
,
Webber
M
,
Orlic-Milacic
M
.
Reactome enhanced pathway visualization
.
Bioinformatics
.
2017
;
33
(
21
):
3461
7
.
19.
Ritchie
ME
,
Phipson
B
,
Wu
D
,
Hu
Y
,
Law
CW
,
Shi
W
.
Limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
.
20.
Song
L
,
Luan
B
,
Xu
QR
,
Wang
XF
.
Effect of TLR7 gene expression mediating NF-κB signaling pathway on the pathogenesis of bronchial asthma in mice and the intervention role of IFN-γ
.
Eur Rev Med Pharmacol Sci
.
2021
;
25
(
2
):
866
79
.
21.
Dorion
BJ
,
Burks
AW
,
Harbeck
R
,
Williams
LW
,
Trumble
A
,
Helm
RM
.
The production of interferon-gamma in response to a major peanut allergy, Ara h II correlates with serum levels of IgE anti-Ara h II
.
J Allergy Clin Immunol
.
1994
93
1 Pt 1
93
9
.
22.
Lama
M
,
Chatterjee
M
,
Nayak
CR
,
Chaudhuri
TK
.
Increased interleukin-4 and decreased interferon-γ levels in serum of children with asthma
.
Cytokine
.
2011
;
55
(
3
):
335
8
.
23.
Campbell
DE
,
Fryga
AS
,
Bol
S
,
Kemp
AS
.
Intracellular interferon-gamma (IFN-gamma) production in normal children and children with atopic dermatitis
.
Clin Exp Immunol
.
1999
;
115
(
3
):
377
82
.
24.
Fallegger
A
,
Priola
M
,
Artola-Borán
M
,
Núñez
NG
,
Wild
S
,
Gurtner
A
.
TGF-β production by eosinophils drives the expansion of peripherally induced neuropilin- RORγt+ regulatory T-cells during bacterial and allergen challenge
.
Mucosal Immunol
.
2022
;
15
(
3
):
504
14
.
25.
Halwani
R
,
Al-Muhsen
S
,
Al-Jahdali
H
,
Hamid
Q
.
Role of transforming growth factor-β in airway remodeling in asthma
.
Am J Respir Cell Mol Biol
.
2011
;
44
(
2
):
127
33
.
26.
Morita
Y
,
Campos-Alberto
E
,
Yamaide
F
,
Nakano
T
,
Ohnisi
H
,
Kawamoto
M
.
TGF-Β concentration in breast milk is associated with the development of eczema in infants
.
Front Pediatr
.
2018
;
6
:
162
.
27.
Pelaia
C
,
Paoletti
G
,
Puggioni
F
,
Racca
F
,
Pelaia
G
,
Canonica
GW
.
Interleukin-5 in the pathophysiology of severe asthma
.
Front Physiol
.
2019
;
10
:
1514
.
28.
Metcalfe
JR
,
D’Vaz
N
,
Makrides
M
,
Gold
MS
,
Quinn
P
,
West
CE
.
Elevated IL-5 and IL-13 responses to egg proteins predate the introduction of egg in solid foods in infants with eczema
.
Clin Exp Allergy
.
2016
;
46
(
2
):
308
16
.
29.
Yamamoto
S
,
Hamasaki
Y
,
Ishii
E
,
Ichimaru
T
,
Miyazaki
S
.
Unbalanced production of interleukin-5 and interleukin-2 in children with atopic dermatitis
.
Ann Allergy Asthma Immunol
.
1997
;
78
(
5
):
517
23
.
30.
Kondo
S
,
Yazawa
H
,
Jimbow
K
.
Reduction of serum interleukin-5 levels reflect clinical improvement in patients with atopic dermatitis
.
J Dermatol
.
2001
;
28
(
5
):
237
43
.
31.
Bae
SJ
,
Tanaka
Y
,
Hakugawa
J
,
Katayama
I
.
Interleukin-5 involvement in ovalbumin-induced eosinophil infiltration in mouse food-allergy model
.
J Dermatol Sci
.
1999
;
21
(
1
):
1
7
.
32.
Vandezande
LM
,
Wallaert
B
,
Desreumaux
P
,
Tsicopoulos
A
,
Lamblin
C
,
Tonnel
AB
.
Interleukin-5 immunoreactivity and mRNA expression in gut mucosa from patients with food allergy
.
Clin Exp Allergy
.
1999
;
29
(
5
):
652
9
.
33.
Kouro
T
,
Takatsu
K
.
IL-5- and eosinophil-mediated inflammation: from discovery to therapy
.
Int Immunol
.
2009
;
21
(
12
):
1303
9
.
34.
Brusselle
GG
,
Koppelman
GH
.
Biologic therapies for severe asthma
.
N Engl J Med
.
2022
;
386
(
2
):
157
71
.
35.
Tanaka
H
,
Komai
M
,
Nagao
K
,
Ishizaki
M
,
Kajiwara
D
,
Takatsu
K
.
Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice
.
Am J Respir Cell Mol Biol
.
2004
;
31
(
1
):
62
8
.
36.
Lordan
R
,
Tsoupras
A
,
Zabetakis
I
,
Demopoulos
CA
.
Forty years since the structural elucidation of platelet-activating factor (PAF): historical, current, and future research perspectives
.
Molecules
.
2019
;
24
(
23
):
4414
.
37.
Palgan
K
,
Bartuzi
Z
.
Platelet activating factor in allergies
.
Int J Immunopathol Pharmacol
.
2015
;
28
(
4
):
584
9
.
38.
Patel
PS
,
Kearney
JF
.
CD36 and platelet-activating factor receptor promote house dust mite allergy development
.
J Immunol
.
2017
;
199
(
3
):
1184
95
.
39.
Kihara
Y
,
Ishii
S
,
Kita
Y
,
Toda
A
,
Shimada
A
,
Shimizu
T
.
Dual phase regulation of experimental allergic encephalomyelitis by platelet-activating factor
.
J Exp Med
.
2005
;
202
(
6
):
853
63
.
40.
Batista
NV
,
Fonseca
RC
,
Perez
D
,
Pereira
RV
,
de Lima Alves
J
,
Pinho
V
.
Lack of platelet-activating factor receptor attenuates experimental food allergy but not its metabolic alterations regarding adipokine levels
.
BioMed Res Int
.
2016
;
2016
:
8601359
.
41.
Sudhakara Rao
M
,
Dwarakanatha Reddy
D
,
Murthy
PS
.
Rupatadine: pharmacological profile and its use in the treatment of allergic rhinitis
.
Indian J Otolaryngol Head Neck Surg
.
2009
;
61
(
4
):
320
32
.
42.
Valero
A
,
de la Torre
F
,
Castillo
JA
,
Rivas
P
,
del Cuvillo
A
,
Antépara
I
.
Safety of rupatadine administered over a period of 1 year in the treatment of persistent allergic rhinitis: a multicentre, open-label study in Spain
.
Drug Saf
.
2009
;
32
(
1
):
33
42
.
43.
Hide
M
,
Suzuki
T
,
Tanaka
A
,
Aoki
H
.
Long-term safety and efficacy of rupatadine in Japanese patients with itching due to chronic spontaneous urticaria, dermatitis, or pruritus: a 12-month, multicenter, open-label clinical trial
.
J Dermatol Sci
.
2019
;
94
(
3
):
339
45
.
44.
Fortier
JM
,
Kornbluth
J
.
NK lytic-associated molecule, involved in NK cytotoxic function, is an E3 ligase
.
J Immunol
.
2006
;
176
(
11
):
6454
63
.
45.
Kozlowski
M
,
Schorey
J
,
Portis
T
,
Grigoriev
V
,
Kornbluth
J
.
NK lytic-associated molecule: a novel gene selectively expressed in cells with cytolytic function
.
J Immunol
.
1999
;
163
(
4
):
1775
85
.
46.
Hoover
RG
,
Gullickson
G
,
Kornbluth
J
.
Impaired NK cytolytic activity and enhanced tumor growth in NK lytic-associated molecule-deficient mice
.
J Immunol
.
2009
;
183
(
11
):
6913
21
.
47.
Lawrence
DW
,
Kornbluth
J
.
E3 ubiquitin ligase NKLAM ubiquitinates STAT1 and positively regulates STAT1-mediated transcriptional activity
.
Cell Signal
.
2016
;
28
(
12
):
1833
41
.
48.
Lawrence
DW
,
Gullickson
G
,
Kornbluth
J
.
E3 ubiquitin ligase NKLAM positively regulates macrophage inducible nitric oxide synthase expression
.
Immunobiology
.
2015
;
220
(
1
):
83
92
.
49.
Lawrence
DW
,
Kornbluth
J
.
Reduced inflammation and cytokine production in NKLAM deficient mice during Streptococcus pneumoniae infection
.
PLoS One
.
2018
;
13
(
3
):
e0194202
.
50.
Nakayama
T
.
Introduction to “allergic inflammation”
.
Immunol Rev
.
2017
;
278
(
1
):
5
7
.
51.
Ren
F
,
Ding
X
,
Zheng
M
,
Korzinkin
M
,
Cai
X
,
Zhu
W
.
AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor
.
Chem Sci
.
2023
;
14
(
6
):
1443
52
.
52.
Ivanenkov
YA
,
Polykovskiy
D
,
Bezrukov
D
,
Zagribelnyy
B
,
Aladinskiy
V
,
Kamya
P
.
Chemistry42: an AI-driven platform for molecular design and optimization
.
J Chem Inf Model
.
2023
;
63
(
3
):
695
701
.
53.
Basile
AO
,
Yahi
A
,
Tatonetti
NP
.
Artificial intelligence for drug toxicity and safety
.
Trends Pharmacol Sci
.
2019
;
40
(
9
):
624
35
.
54.
He
D
,
Liu
Q
,
Wu
Y
,
Xie
L
.
A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening
.
Nat Mach Intell
.
2022
;
4
(
10
):
879
92
.
55.
Ferrante
G
,
Licari
A
,
Fasola
S
,
Marseglia
GL
,
La Grutta
S
.
Artificial intelligence in the diagnosis of pediatric allergic diseases
.
Pediatr Allergy Immunol
.
2021
;
32
(
3
):
405
13
.
56.
Shamji
MH
,
Ollert
M
,
Adcock
IM
,
Bennett
O
,
Favaro
A
,
Sarama
R
.
EAACI guidelines on environmental science in allergic diseases and asthma: leveraging artificial intelligence and machine learning to develop a causality model in exposomics
.
Allergy
.
2023
;
78
(
7
):
1742
57
.
57.
Bulfamante
AM
,
Ferella
F
,
Miller
AM
,
Rosso
C
,
Pipolo
C
,
Fuccillo
E
.
Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
.
Eur Arch Otorhinolaryngol
.
2023
;
280
(
2
):
529
42
.
58.
Sallis
BF
,
Erkert
L
,
Moñino-Romero
S
,
Acar
U
,
Wu
R
,
Konnikova
L
.
An algorithm for the classification of mRNA patterns in eosinophilic esophagitis: integration of machine learning
.
J Allergy Clin Immunol
.
2018
;
141
(
4
):
1354
64.e9
.
59.
Mkrtchyan
GV
,
Veviorskiy
A
,
Izumchenko
E
,
Shneyderman
A
,
Pun
FW
,
Ozerov
IV
.
High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders
.
Cell Death Dis
.
2022
;
13
(
11
):
999
.
60.
Durham
SR
,
Shamji
MH
.
Allergen immunotherapy: past, present and future
.
Nat Rev Immunol
.
2022
;
23
(
5
):
317
28
.
61.
Goretzki
A
,
Lin
YJ
,
Schülke
S
.
Immune metabolism in allergies, does it matter? A review of immune metabolic basics and adaptations associated with the activation of innate immune cells in allergy
.
Allergy
.
2021
;
76
(
11
):
3314
31
.
62.
Bryce
PJ
,
Oyoshi
MK
,
Kawamoto
S
,
Oettgen
HC
,
Tsitsikov
EN
.
TRAF1 regulates Th2 differentiation, allergic inflammation and nuclear localization of the Th2 transcription factor, NIP45
.
Int Immunol
.
2006
;
18
(
1
):
101
11
.
63.
Gonzales-van Horn
SR
,
Farrar
JD
.
Interferon at the crossroads of allergy and viral infections
.
J Leukoc Biol
.
2015
;
98
(
2
):
185
94
.
64.
Ait Yahia
S
,
Audousset
C
,
Alvarez-Simon
D
,
Vorng
H
,
Togbe
D
,
Marquillies
P
.
NOD1 sensing of house dust mite-derived microbiota promotes allergic experimental asthma
.
J Allergy Clin Immunol
.
2021
;
148
(
2
):
394
406
.
65.
Wong
CK
,
Hu
S
,
Leung
KM
,
Dong
J
,
He
L
,
Chu
YJ
.
NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma
.
Cell Mol Immunol
.
2013
;
10
(
4
):
317
29
.
66.
Iyer
D
,
Mishra
N
,
Agrawal
A
.
Mitochondrial function in allergic disease
.
Curr Allergy Asthma Rep
.
2017
;
17
(
5
):
29
.
67.
Aguilera-Aguirre
L
,
Bacsi
A
,
Saavedra-Molina
A
,
Kurosky
A
,
Sur
S
,
Boldogh
I
.
Mitochondrial dysfunction increases allergic airway inflammation
.
J Immunol
.
2009
;
183
(
8
):
5379
87
.
68.
Qian
L
,
Mehrabi Nasab
E
,
Athari
SM
,
Athari
SS
.
Mitochondria signaling pathways in allergic asthma
.
J Investig Med
.
2022
;
70
(
4
):
863
82
.
69.
Trinchese
G
,
Paparo
L
,
Aitoro
R
,
Fierro
C
,
Varchetta
M
,
Nocerino
R
.
Hepatic mitochondrial dysfunction and immune response in a murine model of peanut allergy
.
Nutrients
.
2018
;
10
(
6
):
744
.
70.
Chelombitko
MA
,
Chernyak
BV
,
Fedorov
AV
,
Zinovkin
RA
,
Razin
E
,
Paruchuru
LB
.
The role played by mitochondria in FcεRI-dependent mast cell activation
.
Front Immunol
.
2020
;
11
:
584210
.
71.
Bertrand
T
,
Kothe
M
,
Liu
J
,
Dupuy
A
,
Rak
A
,
Berne
PF
.
The crystal structures of TrkA and TrkB suggest key regions for achieving selective inhibition
.
J Mol Biol
.
2012
;
423
(
3
):
439
53
.
72.
Forno
E
,
Zhang
R
,
Jiang
Y
,
Kim
S
,
Yan
Q
,
Ren
Z
.
Transcriptome-wide and differential expression network analyses of childhood asthma in nasal epithelium
.
J Allergy Clin Immunol
.
2020
;
146
(
3
):
671
5
.
73.
Aven
L
,
Paez-Cortez
J
,
Achey
R
,
Krishnan
R
,
Ram-Mohan
S
,
Cruikshank
WW
.
An NT4/TrkB-dependent increase in innervation links early-life allergen exposure to persistent airway hyperreactivity
.
FASEB J
.
2014
;
28
(
2
):
897
907
.
74.
Noga
O
,
Englmann
C
,
Hanf
G
,
Grützkau
A
,
Guhl
S
,
Kunkel
G
.
Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils
.
Clin Exp Allergy
.
2002
;
32
(
9
):
1348
54
.
75.
Nassenstein
C
,
Braun
A
,
Erpenbeck
VJ
,
Lommatzsch
M
,
Schmidt
S
,
Krug
N
.
The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are survival and activation factors for eosinophils in patients with allergic bronchial asthma
.
J Exp Med
.
2003
;
198
(
3
):
455
67
.
76.
Fulkerson
PC
,
Rothenberg
ME
.
Targeting eosinophils in allergy, inflammation and beyond
.
Nat Rev Drug Discov
.
2013
;
12
(
2
):
117
29
.
77.
Liu
BHM
,
Rayner
A
,
Mendelsohn
AR
,
Shneyderman
A
,
Chen
M
,
Pun
FW
.
Applying artificial intelligence to identify common targets for treatment of asthma, eczema, and food allergy
.
BioRxiv
.
2023
547141
.
You do not currently have access to this content.