Dysregulation in component 1q (C1q) levels is associated with weak placental development in preeclampsia (PE). Human immunodeficiency virus infection (HIV-1) triggers the C1q complex, resulting in opsonization of healthy host cells, contributing to their removal, and augmented progression of HIV disease. In coronavirus disease 2019 (COVID-19)-infected patients, the deposition of C1q activates the complement. Considering the paucity of data, this review highlights a significant gap in the potential of C1q in the immunocompromised state of preeclamptic HIV-infected women and COVID-19 infection. In PE, C1q is downregulated; while in antiretroviral treatment-treated HIV/COVID-19 infected patients, C1q is upregulated. It is plausible that C1q is augmented in the triad and may exacerbate severity of disease. This thereby provides a foundation for future intended research which involves the investigation of single nucleotide polymorphism expression of the C1q gene, specifically in these diseases.

1.
World Health Organization (WHO). WHO director-general’s opening remarks at the media briefing on COVID-19. 2020 [cited 2021 Jun 15]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020.
2.
Cao X. COVID-19: immunopathology and its implications for therapy.
Nat Rev Immunol
. 2020;20(5):269–70.
3.
Fauci AS, Lane HC, Redfield RR. Covid-19: navigating the uncharted.
N Engl J Med
. 2020;382:1268–9. https://www.nejm.org/doi/full/10.1056/nejme2002387.
4.
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia.
N Engl J Med
. 2020;382:1199–207. https://www.nejm.org/doi/full/10.1056/nejmoa2001316.
5.
World Health Organization (WHO). Coronavirus disease (COVID-19) dashboard. [cited 2022 Apr 6]. Available from: https://covid19.who.int/.
6.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet
. 2020;395(10223):497–506.
7.
Zhu F, Cao Y, Xu S, Zhou M. Co-infection of SARS-CoV-2 and HIV in a patient in Wuhan city, China.
J Med Virol
. 2020;92(6):529–30.
8.
Govender R, Moodley J, Naicker T. The COVID-19 pandemic: an appraisal of its impact on human immunodeficiency virus infection and pre-eclampsia.
Curr Hypertens Rep
. 2021;23(2):1–14.
9.
World Health Organization (WHO). HIV/AIDS: 30th November 2021 factsheet. 2021 [cited 2022 Apr 6]. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
10.
Statistic South Africa. Mid-year population estimates. Pretoria: National Department of Health; 2021 [cited 2021 Jul 16]. Available from: http://www.statssa.gov.za/publications/P0302/P03022021.pdf.
11.
Teeraananchai S, Kerr SJ, Amin J, Ruxrungtham K, Law MG. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis.
HIV Med
. 2017;18(4):256–66.
12.
Moorhouse M. Closer to zero: reflections on ten years of ART rollout.
South Afr J HIV Med
. 2014;15(1):9.
13.
Byrd KM, Beckwith CG, Garland JM, Johnson JE, Aung S, Cu-Uvin S, et al. SARS-CoV-2 and HIV coinfection: clinical experience from Rhode Island, United States.
J Int AIDS Soc
. 2020;23(7):e25573.
14.
World Health Organization (WHO).
World Health Statistics 2019
. Geneva, Switzerland: World Health Organization; 2019 [cited 2021 Jun 23]. Available from: https://www.who.int/news-room/fact-sheets/detail/maternal-mortality.
15.
Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice.
Hypertension
. 2018;72(1):24–43.
16.
Bangal VB, Giri PA, Mahajan AS. Maternal and foetal outcome in pregnancy induced hypertension: a study from rural tertiary care teaching hospital in India.
Int J Biomed Res
. 2011;2(12):595–9.
17.
Saxena N, Bava A, Nandanwar Y. Maternal and perinatal outcome in severe preeclampsia and eclampsia.
Int J Reprod Contracept Obstet Gynecol
. 2016 [cited 2022 Feb 24];5(7):2171–6.
18.
Tuffnell D, Jankowicz D, Lindow S, Lyons G, Mason G, Russell I, et al. Outcomes of severe pre-eclampsia/eclampsia in Yorkshire 1999/2003.
BJOG
. 2005;112(7):875–80.
19.
Silasi M, Cohen B, Karumanchi SA, Rana S. Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia.
Obstet Gynecol Clin North Am
. 2010;37(2):239–53.
20.
Kraus TA, Engel SM, Sperling RS, Kellerman L, Lo Y, Wallenstein S, et al. Characterizing the pregnancy immune phenotype: results of the viral immunity and pregnancy (VIP) study.
J Clin Immunol
. 2012;32(2):300–11.
21.
Li J, Luo J, Pavlov I, Perez Y, Tan W, Roca O, et al. Awake prone positioning for non-intubated patients with COVID-19-related acute hypoxaemic respiratory failure: a systematic review and meta-analysis.
Lancet Respir Med
. 2022:S2213-2600(22)00043-1.
22.
Carrasco I, Muñoz-Chapuli M, Vigil-Vázquez S, Aguilera-Alonso D, Hernández C, Sánchez-Sánchez C, et al. SARS-COV-2 infection in pregnant women and newborns in a Spanish cohort (GESNEO-COVID) during the first wave.
BMC Pregnancy Childbirth
. 2021;21(1):1–10.
23.
Sarma JV, Ward PA. The complement system.
Cell Tissue Res
. 2011;343(1):227–35.
24.
Carroll MC. The complement system in regulation of adaptive immunity.
Nat Immunol
. 2004;5(10):981–6.
25.
Kovanen PT, Meri S. Function and regulation of the complement system in cardiovascular diseases.
Front Biosci
. 2007;12:4696–708.
26.
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Corrigendum: versatility of the complement system in neuroinflammation, neurodegeneration, and brain homeostasis.
Front Cell Neurosci
. 2015;9:263.
27.
Arlaud GJ, Gaboriaud C, Thielens NM, Rossi V. Structural biology of C1.
Biochem Soc Trans
. 2002;30(6):1001–6.
28.
Noris M, Remuzzi G. Overview of complement activation and regulation.
Semin Nephrol
. 2013;33(6):479–92.
29.
Kishore U, Ghai R, Greenhough TJ, Shrive AK, Bonifati DM, Gadjeva MG, et al. Structural and functional anatomy of the globular domain of complement protein C1q.
Immunol Lett
. 2004;95(2):113–28.
30.
Botto M, Walport MJ. C1q, autoimmunity and apoptosis.
Immunobiology
. 2002;205(4–5):395–406.
31.
Kishore U, Reid KB. C1q: structure, function, and receptors.
Immunopharmacology
. 2000;49(1–2):159–70.
32.
Son M, Diamond B, Santiago-Schwarz F. Fundamental role of C1q in autoimmunity and inflammation.
Immunol Res
. 2015;63(1):101–6.
33.
Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants.
Front Immunol
. 2013;4:114.
34.
Nauta AJ, Castellano G, Xu W, Woltman AM, Borrias MC, Daha MR, et al. Opsonization with C1q and mannose-binding lectin targets apoptotic cells to dendritic cells.
J Immunol
. 2004;173(5):3044–50.
35.
Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, et al. Surfactant proteins SP-A and SP-D: structure, function and receptors.
Mol Immunol
. 2006;43(9):1293–315.
36.
Thielens NM, Tacnet-Delorme P, Arlaud GJ. Interaction of C1q and mannan-binding lectin with viruses.
Immunobiology
. 2002;205(4–5):563–74.
37.
Bordin S, Whitfield D. Cutting edge: proliferating fibroblasts respond to collagenous C1q with phosphorylation of p38 mitogen-activated protein kinase and apoptotic features.
J Immunol
. 2003;170(2):667–71.
38.
Clarke EV, Weist BM, Walsh CM, Tenner AJ. Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation.
J Leukoc Biol
. 2015;97(1):147–60.
39.
He YD, Xu BN, Song D, Wang YQ, Yu F, Chen Q, et al. Normal range of complement components during pregnancy: a prospective study.
Am J Reprod Immunol
. 2020;83(2):e13202.
40.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.
Cell
. 2020;181(2):271–80.e8.
41.
Gralinski L, Sheahan T, Morrison T, Menachery V, Jensen K, Leist S, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis.
MBio
. 2018;9(5):e01753-18.
42.
Risitano AM, Mastellos DC, Huber-Lang M, Yancopoulou D, Garlanda C, Ciceri F, et al. Complement as a target in COVID-19?
Nat Rev Immunol
. 2020;20(6):343–4.
43.
Ip WE, Chan KH, Law HK, Tso GH, Kong EK, Wong WH, et al. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection.
J Infect Dis
. 2005;191(10):1697–704.
44.
Lo MW, Kemper C, Woodruff TM. COVID-19: complement, coagulation, and collateral damage.
J Immunol
. 2020;205(6):1488–95.
45.
Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact.
Kidney Int
. 2020;98(2):314–22.
46.
Yuan FF, Tanner J, Chan P, Biffin S, Dyer W, Geczy A, et al. Influence of FcγRIIA and MBL polymorphisms on severe acute respiratory syndrome.
Tissue Antigens
. 2005;66(4):291–6.
47.
Maglakelidze N, Manto KM, Craig TJ. A review: does complement or the contact system have a role in protection or pathogenesis of COVID-19?
Pulm Ther
. 2020;6:169–76.
48.
Casciola-Rosen L, Thiemann DR, Andrade F, Zambrano MIT, Hooper JE, Leonard EK, et al. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19.
MedRxiv
. 2020.
49.
Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases.
Transl Res
. 2020;220:1–13.
50.
Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients.
Proc Natl Acad Sci U S A
. 2020;117(40):25018–25.
51.
Satyam A, Tsokos MG, Brook OR, Hecht JL, Moulton VR, Tsokos GC. Activation of classical and alternative complement pathways in the pathogenesis of lung injury in COVID-19.
Clin Immunol
. 2021;226:108716.
52.
Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed.
Nat Rev Immunol
. 2020;20(7):389–91.
53.
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure.
Nature
. 2005;436(7047):112–6.
54.
Lynch KL, Whitman JD, Lacanienta NP, Beckerdite EW, Kastner SA, Shy BR, et al. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity.
Clin Infect Dis
. 2020;72(2):301–8.
55.
Chaisson NF, Paik J, Orbai A-M, Casciola-Rosen L, Fiorentino D, Danoff S, et al. A novel dermato-pulmonary syndrome associated with MDA-5 antibodies: report of 2 cases and review of the literature.
Medicine
. 2012;91(4):220–8.
56.
Fagarasan S, Honjo T. T-Independent immune response: new aspects of B cell biology.
Science
. 2000;290(5489):89–92.
57.
Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes.
Nat Rev Immunol
. 2013;13(2):118–32.
58.
De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia.
Nat Commun
. 2020;11(1):1–17.
59.
Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19.
Nat Med
. 2020;26(7):1070–6.
60.
Stoiber H, Kacani L, Speth C, Würzner R, Dierich MP. The supportive role of complement in HIV pathogenesis.
Immunol Rev
. 2001;180(1):168–76.
61.
Alqudah MAY, Yaseen MMM, Yaseen MMS. HIV-1 strategies to overcome the immune system by evading and invading innate immune system.
HIV AIDS Rev
. 2016;15(1):1–12.
62.
Ebenbichler CF, Thielens NM, Vornhagen R, Marschang P, Arlaud GJ, Dierich MP. Human immunodeficiency virus type 1 activates the classical pathway of complement by direct C1 binding through specific sites in the transmembrane glycoprotein gp41.
J Exp Med
. 1991;174(6):1417–24.
63.
Süsal C, Kirschfink M, Kröpelin M, Daniel V, Opelz G. Complement activation by recombinant HIV-1 glycoprotein gp120.
J Immunol
. 1994;152(12):6028–34.
64.
Yu Q, Yu R, Qin X. The good and evil of complement activation in HIV-1 infection.
Cell Mol Immunol
. 2010;7(5):334–40.
65.
Sheng A, Lan J, Wu H, Lu J, Wang Y, Chu Q, et al. A clinical case–control study on the association between mannose-binding lectin and susceptibility to HIV-1 infection among northern Han Chinese population.
Int J Immunogenet
. 2010;37(6):445–54.
66.
Li H, Fu WP, Hong ZH. Replication study in Chinese Han population and meta-analysis supports association between the MBL2 gene polymorphism and HIV-1 infection.
Infect Genet Evol
. 2013;20:163–70.
67.
Eisen S, Dzwonek A, Klein NJ. Mannose-binding lectin in HIV infection.
Future Virol
. 2008;3(3):225–33.
68.
Aasa-Chapman MM, Holuigue S, Aubin K, Wong M, Jones NA, Cornforth D, et al. Detection of antibody-dependent complement-mediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection.
J Virol
. 2005;79(5):2823–30.
69.
Stoiber H, Thielens NM, Ebenbichler C, Arlaud GJ, Dierich MP. The envelope glycoprotein of HIV-1 gp120 and human complement protein C1q bind to the same peptides derived from three different regions of gp41, the transmembrane glycoprotein of HIV-1, and share antigenic homology.
Eur J Immunol
. 1994;24(2):294–300.
70.
Bozzini S, Falcone V, Conaldi PG, Visai L, Biancone L, Dolei A, et al. Heparin-binding domain of human fibronectin binds HIV-1 gp120/160 and reduces virus infectivity.
J Med Virol
. 1998;54(1):44–53.
71.
Szabo J, Cervenak L, Toth F, Prohaszka Z, Horvath L, Kerekes K, et al. Soluble gC1q-R/p33, a cell protein that binds to the globular “heads” of C1q, effectively inhibits the growth of HIV-1 strains in cell cultures.
Clin Immunol
. 2001;99(2):222–31.
72.
Hidvégi T, Prohászka Z, Ujhelyi E, Thielens N, Dierich M, Hampl H, et al. Studies on the mechanism of complement-mediated inhibition of antibody binding to HIV gp41.
Clin Exp Immunol
. 1993;94(3):490–3.
73.
Kowalski M, Potz J, Basiripour L, Dorfman T, Goh WC, Terwilliger E, et al. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1.
Science
. 1987;237(4820):1351–5. https://www.science.org/doi/10.1126/science.3629244.
74.
Goodman EB, Tenner AJ. Signal transduction mechanisms of C1q-mediated superoxide production. Evidence for the involvement of temporally distinct staurosporine-insensitive and sensitive pathways.
J Immunol
. 1992;148(12):3920–8.
75.
Schifferli JA, Woo P, Peters DK. Complement-mediated inhibition of immune precipitation. I. Role of the classical and alternative pathways.
Clin Exp Immunol
. 1982;47(3):555–62. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1536444/.
76.
Procaccia S, Blasio R, Villa P, Lazzarin A, Bonacina C, Novati R, et al. Rheumatoid factors and circulating immune complexes in HIV-infected individuals.
AIDS
. 1991;5(12):1441–6.
77.
Spear G, Olinger G, Sullivan B, Landay A, Kessler H, Connick E, et al. Alteration of complement protein levels after antiretroviral therapy in HIV-infected persons.
AIDS Res Hum Retroviruses
. 1999;15(18):1713–5. https://www.liebertpub.com/doi/10.1089/088922299309766.
78.
Speth C, Stoiber H, Dierich MP. Complement in different stages of HIV infection and pathogenesis.
Int Arch Allergy Immunol
. 2003;130(4):247–57.
79.
Baines MG, Millar KG, Mills P. Studies of complement levels in normal human pregnancy.
Obstet Gynecol
. 1974;43(6):806–10.
80.
Faulk WP, Jarret R, Keane M, Johnson PM, Boackle RJ. Immunological studies of human placentae: complement components in immature and mature chorionic villi.
Clin Exp Immunol
. 1980;40(2):299–305. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1535962/.
81.
Denny KJ, Woodruff TM, Taylor SM, Callaway LK. Complement in pregnancy: a delicate balance.
Am J Reprod Immunol
. 2013;69(1):3–11.
82.
Richani K, Soto E, Romero R, Espinoza J, Chaiworapongsa T, Nien JK, et al. Normal pregnancy is characterized by systemic activation of the complement system.
J Matern Fetal Neonatal Med
. 2005;17(4):239–45.
83.
Bulla R, Bossi F, Tedesco F. The complement system at the embryo implantation site: friend or foe?
Front Immunol
. 2012;3:55.
84.
Bulla R, Agostinis C, Bossi F, Rizzi L, Debeus A, Tripodo C, et al. Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium.
Mol Immunol
. 2008;45(9):2629–40.
85.
Kouser L, Madhukaran SP, Shastri A, Saraon A, Ferluga J, Al-Mozaini M, et al. Emerging and novel functions of complement protein C1q.
Front Immunol
. 2015;6:317.
86.
Regal JF, Burwick RM, Fleming SD. The complement system and preeclampsia.
Curr Hypertens Rep
. 2017;19(11):87–12.
87.
Girardi G, Bulla R, Salmon JE, Tedesco F. The complement system in the pathophysiology of pregnancy.
Mol Immunol
. 2006;43(1–2):68–77.
88.
Zhou Y, Genbacev O, Fisher SJ. The human placenta remodels the uterus by using a combination of molecules that govern vasculogenesis or leukocyte extravasation.
Ann N Y Acad Sci
. 2003;995(1):73–83.
89.
Derzsy Z, Prohászka Z, Rigó J Jr, Füst G, Molvarec A. Activation of the complement system in normal pregnancy and preeclampsia.
Mol Immunol
. 2010;47(7–8):1500–6.
90.
Lokki AI, Kaartokallio T, Holmberg V, Onkamo P, Koskinen LL, Saavalainen P, et al. Analysis of complement C3 gene reveals susceptibility to severe preeclampsia.
Front Immunol
. 2017;8:589.
91.
Chow WN, Lee YL, Wong PC, Chung MK, Lee KF, Yeung WS. Complement 3 deficiency impairs early pregnancy in mice.
Mol Reprod Dev
. 2009;76(7):647–55.
92.
Albieri A, Kipnis T, Bevilacqua E. A possible role for activated complement component 3 in phagocytic activity exhibited by the mouse trophoblast.
Am J Reprod Immunol
. 1999;41(5):343–52.
93.
Madhukaran SP, Alhamlan FS, Kale K, Vatish M, Madan T, Kishore U. Role of collectins and complement protein C1q in pregnancy and parturition.
Immunobiology
. 2016;221(11):1273–88.
94.
Bossi F, Tripodo C, Rizzi L, Bulla R, Agostinis C, Guarnotta C, et al. C1q as a unique player in angiogenesis with therapeutic implication in wound healing.
Proc Natl Acad Sci U S A
. 2014;111(11):4209–14.
95.
Agostinis C, Bulla R, Tripodo C, Gismondi A, Stabile H, Bossi F, et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development.
J Immunol
. 2010;185(7):4420–509.
96.
Singh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of preeclampsia in mice.
Hypertension
. 2011;58(4):716–24.
97.
Bulla R, Bossi F, Agostinis C, Radillo O, Colombo F, De Seta F, et al. Complement production by trophoblast cells at the feto-maternal interface.
J Reprod Immunol
. 2009;82(2):119–25.
98.
Abramson SB, Buyon JP. Activation of the complement pathway: comparison of normal pregnancy, preeclampsia, and systemic lupus erythematosus during pregnancy.
Am J Reprod Immunol
. 1992;28(3–4):183–7.
99.
Haeger M, Bengtsson A. Humoral immunology in normotensive and hypertensive pregnancy.
Fetal Matern Med Rev
. 1994;6(2):95–112.
100.
Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies.
Nat Genet
. 1998;19(1):56–9.
101.
Agostinis C, Stampalija T, Tannetta D, Loganes C, Vecchi Brumatti L, De Seta F, et al. Complement component C1q as potential diagnostic but not predictive marker of preeclampsia.
Am J Reprod Immunol
. 2016;76(6):475–81.
102.
Sinha D, Wells M, Faulk WP. Immunological studies of human placentae: complement components in pre-eclamptic chorionic villi.
Clin Exp Immunol
. 1984;56(1):175–84. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1535962/.
103.
Allaire AD, Ballenger KA, Wells SR, McMahon MJ, Lessey BA. Placental apoptosis in preeclampsia.
Obstet Gynecol
. 2000;96(2):271–6.
104.
Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, Maruo T. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation.
Am J Obstet Gynecol
. 2002;186(1):158–66.
105.
Benoit ME, Clarke EV, Morgado P, Fraser DA, Tenner AJ. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells.
J Immunol
. 2012;188(11):5682–93.
106.
Lillegard KE.
The role of complement system activation in placental ischemia-induced hypertension
. Saint Paul, MN: University of Minnesota; 2013 [cited Jun 22]. Available from: https://conservancy.umn.edu/handle/11299/162366.
107.
Agostinis C, Tedesco F, Bulla R. Alternative functions of the complement protein C1q at embryo implantation site.
J Reprod Immunol
. 2017;119:74–80.
108.
Lokki AI, Heikkinen-Eloranta J, Jarva H, Saisto T, Lokki M-L, Laivuori H, et al. Complement activation and regulation in preeclamptic placenta.
Front Immunol
. 2014;5:312.
109.
Buurma A, Cohen D, Veraar K, Schonkeren D, Claas FH, Bruijn JA, et al. Preeclampsia is characterized by placental complement dysregulation.
Hypertension
. 2012;60(5):1332–7.
110.
Tannetta D, Mackeen M, Kessler B, Sargent I, Redman C. OS045. Multi-dimensional protein identification technology analysis of syncytiotrophoblast vesicles released from perfused preeclampsia placentas.
Pregnancy Hypertens
. 2012;2(3):201–2.
111.
Huppertz B. IFPA award in placentology lecture: biology of the placental syncytiotrophoblast–myths and facts.
Placenta
. 2010;31(Suppl):S75–81.
112.
Redman CW, Sargent IL. Latest advances in understanding preeclampsia.
Science
. 2005;308(5728):1592–4.
113.
Pillay Y, Moodley J, Naicker T. The role of the complement system in HIV infection and preeclampsia.
Inflamm Res
. 2019;68(6):459–69.
114.
Kacani L, Bánki Z, Zwirner J, Schennach H, Bajtay Z, Erdei A, et al. C5a and C5adesArg enhance the susceptibility of monocyte-derived macrophages to HIV infection.
J Immunol
. 2001;166(5):3410–5.
115.
Rossheim AE, Cunningham TD, Hair PS, Shah T, Cunnion KM, Troy SB. Effects of well-controlled HIV infection on complement activation and function.
J Acquir Immune Defic Syndr
. 2016;73(1):20–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981513/.
116.
Vujkovic-Cvijin I, Sortino O, Verheij E, Wit FW, Kootstra NA, Sellers B, et al. The complement pathway is activated in people with human immunodeficiency virus and is associated with non-AIDS comorbidities.
J Infect Dis
. 2021;224(8):1405–9.
117.
Vizcarra P, Pérez-Elías MJ, Quereda C, Moreno A, Vivancos MJ, Dronda F, et al. Description of COVID-19 in HIV-infected individuals: a single-centre, prospective cohort.
Lancet HIV
. 2020 Aug [cited 2021 Aug];7(8):e554–64. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3588554.
118.
Xu Z, Zhang C, Wang FS. COVID-19 in people with HIV.
Lancet HIV
. 2020;7(8):e524–6.
119.
Narang K, Enninga EAL, Gunaratne MD, Ibirogba ER, Trad ATA, Elrefaei A, et al. SARS-CoV-2 infection and COVID-19 during pregnancy: a multidisciplinary review.
Mayo Clin Proc
. 2020;95(8):1750–65.
120.
Mendoza M, Garcia-Ruiz I, Maiz N, Rodo C, Garcia-Manau P, Serrano B, et al. Pre-eclampsia-like syndrome induced by severe COVID-19: a prospective observational study.
BJOG
. 2020;127(11):1374–80.
121.
Teirilä L, Heikkinen-Eloranta J, Kotimaa J, Meri S, Lokki AI. Regulation of the complement system and immunological tolerance in pregnancy.
Semin Immunol
. 2019;45:101337.
122.
Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19.
Nat Rev Nephrol
. 2021;17(1):46–64.
123.
Bouhlal H, Chomont N, Haeffner-Cavaillon N, Kazatchkine MD, Belec L, Hocini H. Opsonization of HIV-1 by semen complement enhances infection of human epithelial cells.
J Immunol
. 2002;169(6):3301–6.
124.
Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19.
Am J Hematol
. 2020;95(12):1578–89.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.