Objectives: To characterize the epithelial-mesenchymal transition (EMT) in chronic rhinosinusitis with nasal polyps (CRSwNP) and to investigate the mechanism by which microRNA-21 (miR-21) regulates EMT in CRSwNP. Method: (1) Tissue experiments: Mucosa tissues were collected from 13 patients with CRSwNP and 12 patients with CRS without nasal polyps (CRSsNP), as well as 11 patients without CRS (controls). Protein localization and quantification were achieved by immunofluorescence staining and Western blotting, involving the epithelial marker protein E-cadherin and the mesenchymal marker proteins α-smooth muscle actin (α-SMA), fibronectin, and vimentin. Quantitative RT-PCR was used to detect the relative expression levels of miR-21 and TGF-β1 mRNAs. (2) Cellular experiments: Primary human nasal epithelial cells (PHNECs) treated with TGF-β1, or TGF-β1 with miR-21 inhibitor, or miR-21 mimics alone were observed for morphology changes under a phase-contrast microscope. The expression levels of epithelial/mesenchymal marker proteins were determined as aforementioned. PTEN and phosphorylated Akt were detected by Western blotting. Results: (1) Tissue experiments: Compared with the CRSsNP and control groups, the expression of E-cadherin was downregulated in the CRSwNP group, whereas the expression of TGF-β1, α-SMA, fibronectin, and vimentin was upregulated. The expression levels of miR-21 and TGF-β1 mRNAs in CRSwNP were significantly higher than those in CRSsNP and controls. (2) Cellular experiments: TGF-β1 induced EMT-like transformation in PHNECs, featured by changes in cell morphology and upregulation of mesenchymal proteins and miR-21. The miR-21 inhibitor, as well as the Akt-specific -inhibitor, suppressed TGF-β1-induced EMT. Mechanically, downregulation of miR-21 resulted in increased PTEN and decreased Akt phosphorylation. Furthermore, overexpression of miR-21 had the opposite effects. Conclusions: Our findings suggest that the TGF-β1-miR-21-PTEN-Akt axis may contribute to the pathogenesis of CRSwNP. miR-21 might be a reliable target for treating nasal polyp genesis through EMT suppression. Moreover, miR-21 inhibitors could be a novel class of antipolyp drug that modulates PTEN expression and Akt activation. In addition, further investigation regarding the reason underlying miR-21 overexpression in CRSwNP could provide a molecular target for novel treatment strategies for nasal polyposis.

1.
Fokkens
WJ
,
Lund
VJ
,
Mullol
J
,
Bachert
C
,
Alobid
I
,
Baroody
F
, et al.
EPOS 2012: european position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists
.
Rhinology
.
2012
Mar
;
50
(
1
):
1
12
.
[PubMed]
0300-0729
2.
Van Bruaene
N
,
Bachert
C
.
Tissue remodeling in chronic rhinosinusitis
.
Curr Opin Allergy Clin Immunol
.
2011
Feb
;
11
(
1
):
8
11
.
[PubMed]
1528-4050
3.
Al-Muhsen
S
,
Johnson
JR
,
Hamid
Q
.
Remodeling in asthma
.
J Allergy Clin Immunol
.
2011
Sep
;
128
(
3
):
451
62
.
[PubMed]
0091-6749
4.
Kim
TH
,
Lee
JY
,
Lee
HM
,
Lee
SH
,
Cho
WS
,
Ju
YH
, et al.
Remodelling of nasal mucosa in mild and severe persistent allergic rhinitis with special reference to the distribution of collagen, proteoglycans, and lymphatic vessels
.
Clin Exp Allergy
.
2010
Dec
;
40
(
12
):
1742
54
.
[PubMed]
0954-7894
5.
Molet
SM
,
Hamid
QA
,
Hamilos
DL
.
IL-11 and IL-17 expression in nasal polyps: relationship to collagen deposition and suppression by intranasal fluticasone propionate
.
Laryngoscope
.
2003
Oct
;
113
(
10
):
1803
12
.
[PubMed]
0023-852X
6.
Serpero
L
,
Petecchia
L
,
Sabatini
F
,
Giuliani
M
,
Silvestri
M
,
Di Blasi
P
, et al.
The effect of transforming growth factor (TGF)-beta1 and (TGF)-beta2 on nasal polyp fibroblast activities involved upper airway remodeling: modulation by fluticasone propionate
.
Immunol Lett
.
2006
May
;
105
(
1
):
61
7
.
[PubMed]
0165-2478
7.
Lazard
DS
,
Prulière-Escabasse
V
,
Papon
JF
,
Escudier
E
,
Coste
A
.
[Injury and epithelial wound healing: a pathophysiologic hypothesis for nasal and sinus polyposis]
.
Presse Med
.
2007
Jul-Aug
;
36
(
7-8
):
1104
8
.
[PubMed]
0755-4982
8.
Mastruzzo
C
,
Greco
LR
,
Nakano
K
,
Nakano
A
,
Palermo
F
,
Pistorio
MP
, et al.
Impact of intranasal budesonide on immune inflammatory responses and epithelial remodeling in chronic upper airway inflammation
.
J Allergy Clin Immunol
.
2003
Jul
;
112
(
1
):
37
44
.
[PubMed]
0091-6749
9.
Wang
QP
,
Escudier
E
,
Roudot-Thoraval
F
,
Abd-Al Samad
I
,
Peynegre
R
,
Coste
A
.
Myofibroblast accumulation induced by transforming growth factor-beta is involved in the pathogenesis of nasal polyps
.
Laryngoscope
.
1997
Jul
;
107
(
7
):
926
31
.
[PubMed]
0023-852X
10.
Burgel
PR
,
Escudier
E
,
Coste
A
,
Dao-Pick
T
,
Ueki
IF
,
Takeyama
K
, et al.
Relation of epidermal growth factor receptor expression to goblet cell hyperplasia in nasal polyps
.
J Allergy Clin Immunol
.
2000
Oct
;
106
(
4
):
705
12
.
[PubMed]
0091-6749
11.
Thiery
JP
.
Epithelial-mesenchymal transitions in tumour progression
.
Nat Rev Cancer
.
2002
Jun
;
2
(
6
):
442
54
.
[PubMed]
1474-175X
12.
Lee
HM
,
Kang
JH
,
Shin
JM
,
Lee
SA
,
Park
IH
.
Chemical Chaperone of Endoplasmic Reticulum Stress Inhibits Epithelial-Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium via the c-Src Pathway
.
Mediators Inflamm
.
2017
;
2017
:
8123281
.
[PubMed]
0962-9351
13.
Hupin
C
,
Gohy
S
,
Bouzin
C
,
Lecocq
M
,
Polette
M
,
Pilette
C
.
Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis
.
Allergy
.
2014
Nov
;
69
(
11
):
1540
9
.
[PubMed]
0105-4538
14.
Shin
HW
,
Cho
K
,
Kim
DW
,
Han
DH
,
Khalmuratova
R
,
Kim
SW
, et al.
Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition
.
Am J Respir Crit Care Med
.
2012
May
;
185
(
9
):
944
54
.
[PubMed]
1073-449X
15.
Park
IH
,
Kang
JH
,
Shin
JM
,
Lee
HM
,
Trichostatin
A
.
Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium
.
PLoS One
.
2016
Aug
;
11
(
8
):
e0162058
.
[PubMed]
1932-6203
16.
Balsalobre
L
,
Pezato
R
,
Perez-Novo
C
,
Alves
MT
,
Santos
RP
,
Bachert
C
, et al.
Epithelium and stroma from nasal polyp mucosa exhibits inverse expression of TGF-β1 as compared with healthy nasal mucosa
.
J Otolaryngol Head Neck Surg
.
2013
Apr
;
42
(
1
):
29
.
[PubMed]
1916-0208
17.
Könnecke
M
,
Burmeister
M
,
Pries
R
,
Böscke
R
,
Bruchhage
KL
,
Ungefroren
H
, et al.
Epithelial-Mesenchymal Transition in Chronic Rhinosinusitis: Differences Revealed Between Epithelial Cells from Nasal Polyps and Inferior Turbinates
.
Arch Immunol Ther Exp (Warsz)
.
2017
Apr
;
65
(
2
):
157
73
.
[PubMed]
0004-069X
18.
Elovic
A
,
Wong
DT
,
Weller
PF
,
Matossian
K
,
Galli
SJ
.
Expression of transforming growth factors-alpha and beta 1 messenger RNA and product by eosinophils in nasal polyps
.
J Allergy Clin Immunol
.
1994
May
;
93
(
5
):
864
9
.
[PubMed]
0091-6749
19.
Zaravinos
A
,
Soufla
G
,
Bizakis
J
,
Spandidos
DA
.
Expression analysis of VEGFA, FGF2, TGFbeta1, EGF and IGF1 in human nasal polyposis
.
Oncol Rep
.
2008
Feb
;
19
(
2
):
385
91
.
[PubMed]
1021-335X
20.
Yamin
M
,
Holbrook
EH
,
Gray
ST
,
Busaba
NY
,
Lovett
B
,
Hamilos
DL
.
Profibrotic transforming growth factor beta 1 and activin A are increased in nasal polyp tissue and induced in nasal polyp epithelium by cigarette smoke and Toll-like receptor 3 ligation
.
Int Forum Allergy Rhinol
.
2015
Jul
;
5
(
7
):
573
82
.
[PubMed]
2042-6976
21.
Meng
J
,
Zhou
P
,
Liu
Y
,
Liu
F
,
Yi
X
,
Liu
S
, et al.
The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling
.
PLoS One
.
2013
Dec
;
8
(
12
):
e82373
.
[PubMed]
1932-6203
22.
Zhang
N
,
Van Zele
T
,
Perez-Novo
C
,
Van Bruaene
N
,
Holtappels
G
,
DeRuyck
N
, et al.
Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease
.
J Allergy Clin Immunol
.
2008
Nov
;
122
(
5
):
961
8
.
[PubMed]
0091-6749
23.
Van Bruaene
N
,
Derycke
L
,
Perez-Novo
CA
,
Gevaert
P
,
Holtappels
G
,
De Ruyck
N
, et al.
TGF-beta signaling and collagen deposition in chronic rhinosinusitis. J Allergy Clin Immunol.
2009
; 124:253-9, 251-9.
24.
Yang
Y
,
Zhang
N
,
Lan
F
,
Van Crombruggen
K
,
Fang
L
,
Hu
G
, et al.
Transforming growth factor-beta 1 pathways in inflammatory airway diseases
.
Allergy
.
2014
Jun
;
69
(
6
):
699
707
.
[PubMed]
0105-4538
25.
Friedman
RC
,
Farh
KK
,
Burge
CB
,
Bartel
DP
.
Most mammalian mRNAs are conserved targets of microRNAs
.
Genome Res
.
2009
Jan
;
19
(
1
):
92
105
.
[PubMed]
1088-9051
26.
Malizia
AP
,
Wang
DZ
.
MicroRNAs in cardiomyocyte development
.
Wiley Interdiscip Rev Syst Biol Med
.
2011
Mar-Apr
;
3
(
2
):
183
90
.
[PubMed]
1939-5094
27.
Stefani
G
,
Slack
FJ
.
Small non-coding RNAs in animal development
.
Nat Rev Mol Cell Biol
.
2008
Mar
;
9
(
3
):
219
30
.
[PubMed]
1471-0072
28.
Ambros
V
.
The evolution of our thinking about microRNAs
.
Nat Med
.
2008
Oct
;
14
(
10
):
1036
40
.
[PubMed]
1078-8956
29.
Li
YF
,
Jing
Y
,
Hao
J
,
Frankfort
NC
,
Zhou
X
,
Shen
B
, et al.
MicroRNA-21 in the pathogenesis of acute kidney injury
.
Protein Cell
.
2013
Nov
;
4
(
11
):
813
9
.
[PubMed]
1674-800X
30.
Esquela-Kerscher
A
,
Slack
FJ
.
Oncomirs - microRNAs with a role in cancer
.
Nat Rev Cancer
.
2006
Apr
;
6
(
4
):
259
69
.
[PubMed]
1474-175X
31.
Hergenreider
E
,
Heydt
S
,
Tréguer
K
,
Boettger
T
,
Horrevoets
AJ
,
Zeiher
AM
, et al.
Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs
.
Nat Cell Biol
.
2012
Feb
;
14
(
3
):
249
56
.
[PubMed]
1465-7392
32.
Cao
W
,
Shi
P
,
Ge
JJ
.
miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway
.
BMC Cardiovasc Disord
.
2017
Mar
;
17
(
1
):
88
.
[PubMed]
1471-2261
33.
Zhong
X
,
Chung
AC
,
Chen
HY
,
Meng
XM
,
Lan
HY
.
Smad3-mediated upregulation of miR-21 promotes renal fibrosis
.
J Am Soc Nephrol
.
2011
Sep
;
22
(
9
):
1668
81
.
[PubMed]
1046-6673
34.
Ong
J
,
Timens
W
,
Rajendran
V
,
Algra
A
,
Spira
A
,
Lenburg
ME
, et al.
Identification of transforming growth factor-beta-regulated microRNAs and the microRNA-targetomes in primary lung fibroblasts
.
PLoS One
.
2017
Sep
;
12
(
9
):
e0183815
.
[PubMed]
1932-6203
35.
Lu
TX
,
Munitz
A
,
Rothenberg
ME
.
MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression
.
J Immunol
.
2009
Apr
;
182
(
8
):
4994
5002
.
[PubMed]
0022-1767
36.
Liu
Y
,
Yang
K
,
Shi
H
,
Xu
J
,
Zhang
D
,
Wu
Y
, et al.
MiR-21 modulates human airway smooth muscle cell proliferation and migration in asthma through regulation of PTEN expression
.
Exp Lung Res
.
2015
;
41
(
10
):
535
45
.
[PubMed]
0190-2148
37.
Liu
Z
,
Wang
J
,
Guo
C
,
Fan
X
.
microRNA-21 mediates epithelial-mesenchymal transition of human hepatocytes via PTEN/Akt pathway
.
Biomed Pharmacother
.
2015
Feb
;
69
:
24
8
.
[PubMed]
0753-3322
38.
He
X
,
Xie
J
,
Zhang
D
,
Su
Q
,
Sai
X
,
Bai
R
, et al.
Recombinant adeno-associated virus-mediated inhibition of microRNA-21 protects mice against the lethal schistosome infection by repressing both IL-13 and transforming growth factor beta 1 pathways
.
Hepatology
.
2015
Jun
;
61
(
6
):
2008
17
.
[PubMed]
0270-9139
39.
Zhu
H
,
Luo
H
,
Li
Y
,
Zhou
Y
,
Jiang
Y
,
Chai
J
, et al.
MicroRNA-21 in scleroderma fibrosis and its function in TGF-β-regulated fibrosis-related genes expression
.
J Clin Immunol
.
2013
Aug
;
33
(
6
):
1100
9
.
[PubMed]
0271-9142
40.
Simone
BA
,
Ly
D
,
Savage
JE
,
Hewitt
SM
,
Dan
TD
,
Ylaya
K
, et al.
microRNA alterations driving acute and late stages of radiation-induced fibrosis in a murine skin model
.
Int J Radiat Oncol Biol Phys
.
2014
Sep
;
90
(
1
):
44
52
.
[PubMed]
0360-3016
41.
Liu
Y
,
Li
Y
,
Li
N
,
Teng
W
,
Wang
M
,
Zhang
Y
, et al.
TGF-β1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21
.
Sci Rep
.
2016
Aug
;
6
(
1
):
32231
.
[PubMed]
2045-2322
42.
Li
C
,
Song
L
,
Zhang
Z
,
Bai
XX
,
Cui
MF
,
Ma
LJ
.
MicroRNA-21 promotes TGF-β1-induced epithelial-mesenchymal transition in gastric cancer through up-regulating PTEN expression
.
Oncotarget
.
2016
Oct
;
7
(
41
):
66989
7003
.
[PubMed]
1949-2553
43.
Dai
X
,
Fang
M
,
Li
S
,
Yan
Y
,
Zhong
Y
,
Du
B
.
miR-21 is involved in transforming growth factor β1-induced chemoresistance and invasion by targeting PTEN in breast cancer
.
Oncol Lett
.
2017
Dec
;
14
(
6
):
6929
36
.
[PubMed]
1792-1074
44.
Liu
G
,
Friggeri
A
,
Yang
Y
,
Milosevic
J
,
Ding
Q
,
Thannickal
VJ
, et al.
miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis
.
J Exp Med
.
2010
Aug
;
207
(
8
):
1589
97
.
[PubMed]
0022-1007
45.
Livak
KJ
,
Schmittgen
TD
.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
.
Methods
.
2001
Dec
;
25
(
4
):
402
8
.
[PubMed]
1046-2023
46.
Thum
T
,
Gross
C
,
Fiedler
J
,
Fischer
T
,
Kissler
S
,
Bussen
M
, et al.
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
.
Nature
.
2008
Dec
;
456
(
7224
):
980
4
.
[PubMed]
0028-0836
47.
Davis
BN
,
Hilyard
AC
,
Lagna
G
,
Hata
A
.
SMAD proteins control DROSHA-mediated microRNA maturation
.
Nature
.
2008
Jul
;
454
(
7200
):
56
61
.
[PubMed]
0028-0836
48.
Zhang
YE
.
Non-Smad pathways in TGF-beta signaling
.
Cell Res
.
2009
Jan
;
19
(
1
):
128
39
.
[PubMed]
1001-0602
49.
Kakkar
R
,
Lee
RT
.
Intramyocardial fibroblast myocyte communication
.
Circ Res
.
2010
Jan
;
106
(
1
):
47
57
.
[PubMed]
0009-7330
50.
Kou
W
,
Hu
GH
,
Yao
HB
,
Wang
XQ
,
Shen
Y
,
Kang
HY
, et al.
Regulation of transforming growth factor-β1 activation and expression in the tissue remodeling involved in chronic rhinosinusitis
.
ORL J Otorhinolaryngol Relat Spec
.
2012
;
74
(
3
):
172
8
.
[PubMed]
0301-1569
51.
Smith
KA
,
Orlandi
RR
,
Rudmik
L
.
Cost of adult chronic rhinosinusitis: A systematic review
.
Laryngoscope
.
2015
Jul
;
125
(
7
):
1547
56
.
[PubMed]
0023-852X
52.
Border
WA
,
Noble
NA
.
Transforming growth factor beta in tissue fibrosis
.
N Engl J Med
.
1994
Nov
;
331
(
19
):
1286
92
.
[PubMed]
0028-4793
53.
Bassiouni
A
,
Chen
PG
,
Wormald
PJ
.
Mucosal remodeling and reversibility in chronic rhinosinusitis
.
Curr Opin Allergy Clin Immunol
.
2013
Feb
;
13
(
1
):
4
12
.
[PubMed]
1528-4050
54.
Sobol
SE
,
Fukakusa
M
,
Christodoulopoulos
P
,
Manoukian
JJ
,
Schloss
MD
,
Frenkiel
S
, et al.
Inflammation and remodeling of the sinus mucosa in children and adults with chronic sinusitis
.
Laryngoscope
.
2003
Mar
;
113
(
3
):
410
4
.
[PubMed]
0023-852X
55.
Hackett
TL
,
Warner
SM
,
Stefanowicz
D
,
Shaheen
F
,
Pechkovsky
DV
,
Murray
LA
, et al.
Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1
.
Am J Respir Crit Care Med
.
2009
Jul
;
180
(
2
):
122
33
.
[PubMed]
1073-449X
56.
Kalluri
R
,
Neilson
EG
.
Epithelial-mesenchymal transition and its implications for fibrosis
.
J Clin Invest
.
2003
Dec
;
112
(
12
):
1776
84
.
[PubMed]
0021-9738
57.
Schleimer
RP
.
Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis
.
Annu Rev Pathol
.
2017
Jan
;
12
(
1
):
331
57
.
[PubMed]
1553-4006
58.
Kalluri
R
,
Weinberg
RA
.
The basics of epithelial-mesenchymal transition
.
J Clin Invest
.
2009
Jun
;
119
(
6
):
1420
8
.
[PubMed]
0021-9738
59.
Massagué
J
.
TGFβ signalling in context
.
Nat Rev Mol Cell Biol
.
2012
Oct
;
13
(
10
):
616
30
.
[PubMed]
1471-0072
60.
Heldin
CH
,
Miyazono
K
,
ten Dijke
P
.
TGF-beta signalling from cell membrane to nucleus through SMAD proteins
.
Nature
.
1997
Dec
;
390
(
6659
):
465
71
.
[PubMed]
0028-0836
61.
Ryu
NH
,
Shin
JM
,
Um
JY
,
Park
IH
,
Lee
HM
.
Wogonin inhibits transforming growth factor β1-induced extracellular matrix production via the p38/activator protein 1 signaling pathway in nasal polyp-derived fibroblasts
.
Am J Rhinol Allergy
.
2016
Jul
;
30
(
4
):
128
33
.
[PubMed]
1945-8924
62.
Hills
CE
,
Squires
PE
.
The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy
.
Cytokine Growth Factor Rev
.
2011
Jun
;
22
(
3
):
131
9
.
[PubMed]
1359-6101
63.
Wang
JY
,
Gao
YB
,
Zhang
N
,
Zou
DW
,
Wang
P
,
Zhu
ZY
, et al.
miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy
.
Mol Cell Endocrinol
.
2014
Jul
;
392
(
1-2
):
163
72
.
[PubMed]
0303-7207
64.
Liu
ZL
,
Wang
H
,
Liu
J
,
Wang
ZX
.
MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN
.
Mol Cell Biochem
.
2013
Jan
;
372
(
1-2
):
35
45
.
[PubMed]
0300-8177
65.
Bao
L
,
Yan
Y
,
Xu
C
,
Ji
W
,
Shen
S
,
Xu
G
, et al.
MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways
.
Cancer Lett
.
2013
Sep
;
337
(
2
):
226
36
.
[PubMed]
0304-3835
66.
Zhu
W
,
Xu
B
.
MicroRNA-21 identified as predictor of cancer outcome: a meta-analysis
.
PLoS One
.
2014
Aug
;
9
(
8
):
e103373
.
[PubMed]
1932-6203
67.
Li
J
,
Jiang
K
,
Zhao
F
.
Icariin regulates the proliferation and apoptosis of human ovarian cancer cells through microRNA-21 by targeting PTEN, RECK and Bcl-2
.
Oncol Rep
.
2015
Jun
;
33
(
6
):
2829
36
.
[PubMed]
1021-335X
68.
Kalogirou
C
,
Schäfer
D
,
Krebs
M
,
Kurz
F
,
Schneider
A
,
Riedmiller
H
, et al.
Metformin-Derived Growth Inhibition in Renal Cell Carcinoma Depends on miR-21-Mediated PTEN Expression
.
Urol Int
.
2016
;
96
(
1
):
106
15
.
[PubMed]
0042-1138
69.
Meng
F
,
Henson
R
,
Wehbe-Janek
H
,
Ghoshal
K
,
Jacob
ST
,
Patel
T
.
MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer
.
Gastroenterology
.
2007
Aug
;
133
(
2
):
647
58
.
[PubMed]
0016-5085
70.
Li
J
,
Yen
C
,
Liaw
D
,
Podsypanina
K
,
Bose
S
,
Wang
SI
, et al.
PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer
.
Science
.
1997
Mar
;
275
(
5308
):
1943
7
.
[PubMed]
0036-8075
71.
Bakin
AV
,
Tomlinson
AK
,
Bhowmick
NA
,
Moses
HL
,
Arteaga
CL
.
Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration
.
J Biol Chem
.
2000
Nov
;
275
(
47
):
36803
10
.
[PubMed]
0021-9258
72.
Lamouille
S
,
Derynck
R
.
Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway
.
J Cell Biol
.
2007
Jul
;
178
(
3
):
437
51
.
[PubMed]
0021-9525
73.
Thiery
JP
.
Epithelial-mesenchymal transitions in development and pathologies
.
Curr Opin Cell Biol
.
2003
Dec
;
15
(
6
):
740
6
.
[PubMed]
0955-0674
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.